نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه خاتم الانبیا بهبهان

2 عضو هیات علمی دانشگاه صنعتی خاتم الانبیا بهبهان

3 استادیارگروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه صنعتی خاتم الانبیاء بهبهان.

چکیده

مدل­سازی فرایند بارش-رواناب از اهمیت به سزایی برخوردار می­باشد. نتایج مدل­های بارش-رواناب به طور مستقیم در مسائلی از قبیل مدیریت منابع آب، کنترل سیلاب و طراحی سازه­های هیدرولیکی مورد استفاده قرار می­گیرد. با توجه به تنوع مدل­هایبارش­رواناب دردسترس، انتخاب یک مدل مناسب برای حوضه از جهت بهره­وری و مدیریت منابع آب مهم می­باشد.در این پژوهش کارایی دو مدل بارشرواناب IHACRES و  GR2Mدر شبیه­سازی جریان ماهانه حوضه دره­تخت در بازه زمانی 92-1379 مورد ارزیابی قرار گرفت. مدل­ها در حوضه مورد مطالعه، واسنجی و اعتبار­سنجی گردیدند. میزان خطای بین مقادیر جریان مشاهده­ای و شبیه­سازی شده بر اساس معیارهای نش، مجذور میانگین مربعات خطا و خطای کل در حجم جریان برآورد گردید. شبیه­سازی­ها حاکی از عملکرد رضایت­بخش دو مدل در شبیه­سازی جریان است. همچنین نتایج نشان داد که مدل IHACRES با ضریب نش 7/0 و معیار خطای 56/ نسبت به مدل GR2M از عمکرد بهتری بر خوردار بود.

کلیدواژه‌ها

عنوان مقاله [English]

Comparing The Performance Of Two Hydrological Models, IHACRES And GR2M For Simulating Monthly Flow Of Dareh-Takht Basin

نویسندگان [English]

  • fatemeh zandi daregharibi 1
  • Zohreh Khorsandi 2
  • Malihe Mozayan 3
  • Nasim Arman 3

1 Behbahan ‌Khatam Alanbia

چکیده [English]

Modeling of the rainfall-runoff process is important. The Results of the rainfall-runoff models have been used directly on issues such as water resource management, flood control and design of hydraulic structures. According to variety of accessible rainfall runoff models, selecting an appropriate model for a basin is important in terms of productivity and water resources management. In this study the performance of two rainfall–runoff models, IHACRES and GR2M in simulation of monthly flow were evaluated in Darhe Tkaht basin between 2000 and 2013 time. The models in the study region were calibrated and validated. The error between observed and simulated flow values was estimated based on the criteria Nash, root mean square error and the total flow volume error. Simulations is indicative satisfactory performance of two models in monthly flow simulation. In addition, the results show that the HACRES model simulate monthly flow with The Nash coefficient 0.7 and RMSE 0.56, better than the GR2M model.

کلیدواژه‌ها [English]

  • Simulation
  • Hydrological model
  • GR2M
  • IHACRES
  • Dareh-Takht basin

1-    بهرامی، ش. مقصودی، م. و. بهرامی، ک­. 1390. بررسی نقش تکتونیک در ناهنجاری مورفومتری شبکه­ی زهکشی در چهار حوضه­ی آبخیزدر زاگرس. پژوهش­های جغرافیا طبیعی، 76(2): 70-51.

 

2-    خزائی، م.ر. ذبیهون، ب. و ثقفیان، ب. 1394. شبیه­سازی جریان روزانه حوضه آبریز در شرایط کمبود داده. علوم و تکنولوژی محیط زیست، 17(1): 90-77.

 

3-     دولت آبادی، س. و زمردیان، م.ع. 1392. شبیه­سازی هیدرولوژیکی حوضه فیروزآباد با استفاده از مدل SWAT. فصلنامه علمی و پژوهشی مهندسی آبیاری و آب، 14(4): 48-38.

 

4-    زارعی، م. حبیب­نژادروشن، م. شاهدی، ک. م و قنبر­پور، م.ر. 1390. کالیبراسیون و ارزیابی مدل هیدرولوژیکی IHACRES به منظور شبیه­سازی جریان روزانه. نشریه آب وخاک (علوم و صنایع کشاورزی)، 25(1): 114-104.

 

5-     گودرزی، م. ا. ذهبیون، ب. مساح بوانی، ع.ر. و کمال، ع.ر. 1391. مقایسه عملکرد سه مدل هیدرولوژی SWAT، IHACRES و SIMHYD در شبیه­سازی رواناب حوضه قره‌سو. مدیریت آب و آبیاری، 2(1): 40-25.

 

6-       Besaw, L. E. Rizzo, D. Bierman, M. and P. R. Hackett. 2010. Advances in ungauged streamflow prediction using artificial neural networks.  Journal of Hydrology, 386(1): 27-37.

 

7-    Boughton, W. 2005. Catchment water balance modelling in Australia 1960–2004. Agricultural Water Management, 71(2): 91-116.

 

8-     Cooper, V.­ Nguyen, A. and V.­T.­V. Nicell. 2007. Calibration of conceptual rainfall–runoff models using global optimization methods with hydrologic process-based parameter constraints. Journal of Hydrology, 334(3): 455-466.

 

9-    Croke, B.­F.M. Andrews, ­W. Spate, F. and J. Cuddy. 2005. IHACRES user guide. Technical Report 2005/19. Second ed. ICAM, School of Resources. Environment and Society. The Australian National University. Canberra. http://www. toolkit. net. au/ihacres.

 

10- Dezettera, A. Girardb, S. Paturela, J.E. Mahec, G. Ardoin-Bardinc, S. and E. Servatc. 2008. Simulation of runoff in West Africa: Is there a single data-model combination that produces the best simulation results?. Journal of Hydrology, 354(1): 203-212.

 

11-  Djellouli, F. Bouanani, A. and K. Baba-Hamed. 2014. RAINFALL-RUNOFF Modeling By a Global Approach: Case of the Basin Louza River (Oued El Hammam-Mactaa-Nw Algerien). The International Seminar on The Hydrogeology and Environment, Issn: m, Aviailable From: http://dspace.univ-ouargla.dz/jspui/handle/123456789/7865.

 

12- Hernandez, d.­C. ramirez, g.­D. gonzalez, m.­R. caciano, r.­T. and J.­E Avalos. 2013. Adjustment and validation of hydrological model GR2M in upper basin Nazas. Agrofaz, 13(2): 81-89.

 

13- Huard, D. and Mailhot, A. 2008. Calibration of hydrological model GR2M using Bayesian uncertainty analysis, water resources research,44(2), w0242: 1-19.

 

14- Littlewood, I.­G. Clarke, R.­T. Collischonn, W. and B.F.M. Croke. 2007. Predicting dailystreamflow using rainfall forecasts. A simpleloss module and unit hydrographs: TwoBrazilian catchments. Environmental Modeling and Software, 22(9): 1229-1239.

 

15- Makhlouf, Z. and C. Michel. 1994. A two-parameter monthly water balance model for French watersheds. Journal of Hydrology, 162(3): 299-318.

 

16- McIntyre, N. and A. Al-Qurashi. 2009. Performance of ten rainfall–runoff models applied to an arid catchment in Oman. Environmental Modelling and Software, 24(6): 726-738.

17- Motovilov, Y.G. Gottschalk, L. Engeland, K. and A. Rohde. 1999. Validation of a distributed hydrological model against spatial observations. Agriculture and Forest Meteorology, 99:257-277.

 

18-  Mouelhi, S. Michel, C. Perrin, C. and V. Andréassian. 2006. Linking stream flow to rainfall at the annual time step: the Manabe bucket model revisited. Journal of Hydrology, 328(1): 283-296.

 

19- Okkan, U. and O. Fistikoglu. 2014, evaluating climate change effects on runoff by statistical downscaling and hydrological model GR2M. Theoretical and Applied Climatology, 117(1-2): 343-361.

 

20- Prieto Sierra, C. Garcia Alonso, E. Mínguez Solana, R. and R. Medina Santamaría. 2013. Proposal of a lumped hydrological model based on general equations of growth–application to five watersheds in the UK. Hydrology and Earth System Sciences Discussions, 10(7): 9309-9361.

 

21- Rwasoka, D.­T. Madamombe, C.­E. Gumindoga, W. and A.T. Kabobah. 2014. ­Calibration, validation, parameter indentifiability and uncertainty analysis of a 2–parameter parsimonious monthly rainfall-runoff model in two catchments in Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C. 67: 36-46.

 

22- Vaze, J. Post, D. A. Chiew, F. H. S. Perraud, J. M. Viney, N. R. and J. Teng, 2010. Climate non-stationarity–validity of calibrated rainfall–runoff models for use in climate change studies. Journal of Hydrology, 394(3): 447-457.