نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد منابع آب، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.

2 دانشیار گروه هیدرولوژی و منابع آب، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

3 استادیار، گروه مهندسی آب، دانشکده مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

چکیده

در این تحقیق هدف ارائه یک مدل واسنجی خودکار براساس کلونی مورچه­ها برای مدل احتساب رطوبت خاک HMS-SMA می­باشد. برای این منظور حوضه معرف کسیلیان به­عنوان مطالعه موردی در این تحقیق مد نظر قرار گرفت. در مدل­های پیوسته بارش-رواناب، تعدد پارامتر­های در نظر گرفته­شده مدل، علاوه بر این­که سبب دشواری واسنجی به روش سعی و خطا می­شوند، امکان واسنجی خودکار بسته نرم­افزاری مورد نظر را نیز از بین می­برد. الگوریتم بهینه­سازی کلونی مورچه­ها با تکیه بر تابع شدت احتمالاتی پیوسته می­تواند به­منظور واسنجی مدل پیوسته بارش-رواناب به­کار رود. برای این منظور در تحقیق حاضر با انتخاب مدل پیوسته بارش-رواناب HMS-SMA، برای غلبه بر ضعف موجود از یک برنامه بهینه­ساز خارجی (الگوریتم کلونی مورچه­ها یا ACOR) جهت برآورد رواناب در مقیاس زمانی شش­ماهه در حوضه معرف کسیلیان استفاده شد. برای ارزیابی مدل ارائه شده،  از چهار سال آبی برای واسنجی و از چهار سال آبی دیگر برای صحت­سنجی مدل استفاده گردید.  معیار نش-ساتکلیف به­عنوان تابع هدف در این تحقیق مورد استفاده قرار گرفت که نتایج حاصل در مرحله واسنجی و صحت­سنجی همگی در محدوده خوب و قابل قبول واقع شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Automatic Calibration of the Continuous HMS-SMA Rainfall-Runoff Model using the Metaheuristic Algorithm (Case Study: Kasilian Basin)

نویسندگان [English]

  • Fahimeh Sartip 1
  • Fereidoun Radmanesh 2
  • Heidar Zarei 2
  • Meysam Salari jazi 3

1 MSc of Water resource Engineering Department of Shahid Chamran University of Ahvaz, Iran.

2 Associate Professor, Water Engineering Department, Shahid Chamran University of Ahvaz, Iran

3 Assistant Professor, Water Engineering Department, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources.

چکیده [English]

     Rainfall-runoff simulation models can be used in many water resources applications such as flood control, drought management. Although modeling is both continuous and single-event, continuous modeling has been less important in our country. In continuous models, more hydrological parameters are involved in comparison with single-event models, although this leads to more complicated modeling, but instead of a more realistic conditions of the hydrological system of the watershed will be illustrated and, in continuous systems, the surface water status can be monitored over a long period of time. Single-event models simulate only one incident, hence the moisture content between rainfall events is not considered, in contrast to continuous models of longer periods for estimating the response of the hydrologic information of the basin considered throughout the length of the rainfall events and between them (Lastoria, 2008). The American Hydrological Engineers Center (HEC), along with continuous hydrologic modeling, added the Soil Moisture Accounting (SMA) soil moisture content algorithm based on the PRMS model to the HMS software (Bennett, 1998). In this research, the aim is to provide an automatic calibration model based on the anion colony for the HMS-SMA soil moisture model. In this continuous model, the multiplicity of the considered parameters of the model, in addition to causing the difficulty of calibration by the method of trial and error, which also allows the automatic calibration of the software package to fail. For this purpose, in this research, by selecting a continuous HMS-SMA rainfall-runoff model, an external optimization program (Anion Cluster Algorithm (ACOR)) was used to overcome the weakness.

کلیدواژه‌ها [English]

  • HMS-SMA
  • Ant colony optimization algorithm
  • Kasilian basin
  • Calibration

1-    Bennett, T.H. and Peters, J.C., 2000. Continuous soil moisture accounting in the hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS). In Building Partnerships (pp. 1-10).

 

2-    Bennett, T.H., 1998. Development and application of a continuous soil moisture accounting algorithm for the Hydrologic Engineering Center Hydrologic Modeling System (HEC-HUMS). University of California, Davis.

 

3-    Bilchev, B. and parmee, I. C. 1995. The ant colony metaphor for searching continuous design spaces. Proc. of the AISB Workshop on Evolutionary Computation, Lect. Notes in Comput. Sci.

 

4-    Bilchev, G. and Parmee, I.C., 1995, April. The ant colony metaphor for searching continuous design spaces. In AISB workshop on evolutionary computing (pp. 25-39). Springer, Berlin, Heidelberg.

 

5-    Cunderlik, J. and Simonovic, S.P., 2004. Calibration, verification and sensitivity analysis of the HEC-HMS hydrologic model. Department of Civil and Environmental Engineering, The University of Western Ontario.

 

6-    Dréo, J. and Siarry, P., 2002, September. A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions. In International Workshop on Ant Algorithms (pp. 216-221). Springer, Berlin, Heidelberg.

 

7-    Fleming, M. and Neary, V., 2004. Continuous hydrologic modeling study with the hydrologic modeling system. Journal of hydrologic engineering, 9(3), pp.175-183.

 

8-    García, A., Sainz, A., Revilla, J.A., Álvarez, C., Juanes, J.A. and Puente, A., 2008. Surface water resources assessment in scarcely gauged basins in the north of Spain. Journal of Hydrology, 356(3-4), pp.312-326.

 

9-    Lastoria, B., 2008. Hydrological processes on the land surface: A survey of modelling approaches (p. 60). Università di Trento. Dipartimento di ingegneria civile e ambientale.

 

10- Mathur, M., Karale, S.B., Priye, S., Jayaraman, V.K. and Kulkarni, B.D., 2000. Ant colony approach to continuous function optimization. Industrial & engineering chemistry research, 39(10), pp.3814-3822.

 

11- Monmarché, N., Venturini, G. and Slimane, M., 2000. On how Pachycondyla apicalis ants suggest a new search algorithm. Future generation computer systems, 16(8), pp.937-946.

 

12- Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), pp.282-290.

 

13- Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), pp.282-290.

 

14- Rawls, Walter J., Donald L. Brakensiek, and K. E. Saxtonn. "Estimation of soil water properties." Transactions of the ASAE 25, no. 5 (1982): 1316-1320.

 

15- Refsgaard, J.C. and Knudsen, J., 1996. Operational validation and intercomparison of different types of hydrological models. Water Resources Research, 32(7), pp.2189-2202.

 

16- Saxton, K.E., Rawls, W., Romberger, J.S. and Papendick, R.I., 1986. Estimating generalized soil-water characteristics from texture 1. Soil Science Society of America Journal, 50(4), pp.1031-1036.

 

17- Skaggs, R.W. and Khaleel, R., 1982. Infiltration. Hydrologic modeling of small watersheds. ASAE Monogr, 5, pp.121-166.

 

18- Socha, K. and Dorigo, M., 2008. Ant colony optimization for continuous domains. European journal of operational research, 185(3), pp.1155-1173.