نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی

2 استادیار دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی

چکیده

روابط هندسه هیدرولیکی در قالب عرض مقطع پر، عمق متوسط مقطع پر، سرعت متوسط جریان و شیب طولی بستر، شکل رودخانه را توصیف می‌کند. هدف اصلی این مطالعه، به‌دست آوردن تحلیلی روابط هندسه هیدرولیکی بازه‌ای در پیچان‌رودها با در نظر گرفتن جریان ثانویه می‌باشد. ابتدا مبانی و مفهوم هندسه هیدرولیکی گفته شده و در ادامه به صورت تحلیلی با استفاده از چهار معادله پیوستگی جریان، مقاومت جریان، تابع شیلدز و رابطه جریان ثانویه، روابط هندسه هیدرولیکی به‌دست ‌آمده است که متغیرهای مستقل شامل دبی جریان، اندازه ذرات رسوبی و بار رسوبی بستر و متغیرهای وابسته شامل عمق متوسط، عرض، سرعت متوسط جریان و شیب طولی بستر می‌باشد. واسنجی مدل نشان‌دهنده تطابق نسبتاًخوب مقادیر اندازه‌گیری شده و محاسباتی می‌باشد. در هر صورت اختلافاتی نیز وجود دارد که به دلیل فرضیات مدل می‌باشد. در انتها حساسیت سنجی مدل صورت گرفته تا مشخص شود که مدل نسبت به چه پارامتری حساس‌تر می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analytical Model of Hydraulic Geometry Functions in Meander River

نویسندگان [English]

  • Mojgan Shahosainy 1
  • Mohammad Reza Majdzadeh Tabatabai 2
  • Seyyed Saeid Mousavi Nadoushani 2

1 Expert of Hydraulic Engineering, Faculty of Civil and Environmental Eng., Shahid Beheshti University

2 Assistant Professor, Civil, Water and Environmental Engineering Department., Shahid Beheshti University

چکیده [English]

Regime and hydraulic geometry are two of the most important proposed models  over the past century in the related disciplines of river engineering and fluvial geomorphology. Therefore, the hydraulic geometry is of prime importance in planning, design, and management of river engineering and training works (Huang, 1996). The first systematic analysis was conducted on canal systems in India by Kennedy (1895) who exhibited a relation between velocity and depth. Downstream hydraulic geometry relationships describe the shape of bank-full alluvial channels in terms of bank-full width, average flow depth, average flow velocity and channel bed slope. Although some concepts of hydraulic geometry were proposed toward the end of the nineteenth century, the real impetus toward formulating a theory of hydraulic geometry was provided by the work of Leopold and Maddock (1953). Leopold and Maddock (1953) adapted the ideas from regime relations for canals to the description of natural stream channels. Generally, there are two experimental and analytical methods to obtain the hydraulic geometry relations in order to determine the stable geometric dimensions of the rivers. Different researchers have studied hydraulic geometry relations for straight rivers without considering the effect of the secondary flow. The main focus of this study is to analytically derive the hydraulic geometry equations considering the concept of secondary flow in meandering channels.

کلیدواژه‌ها [English]

  • hydraulic geometry
  • secondary flow
  • meandering channels

1-    Ayyoubzadeh, S.A., 2002. Study of Stable (Regime) Channel Design using Minimum Energy Approach in order to establish a design standard. Iran Water Resources Management  Organization (IWRMO). Final Report (In Persian).

 

2-    Blench, T. 1952. Regime theory for self-formed sediment-bearing channels. Transactions of the American Society of Civil Engineers, 117(1), pp.383–408.

 

3-    Bray, D.I. and Davar, K.S., 1987. Resistance to flow in gravel-bed rivers. Canadian Journal of Civil Engineering14(1), pp.77-86.

 

4-    Eaton, B.C., 2013. Hydraulic geometry: Empirical investigations and theoretical approaches. Treatise on Geomorphology9, pp.313-329.

 

5-    Eaton, B.C. and Church, M., 2004. A graded stream response relation for bed load–dominated streams. Journal of Geophysical Research: Earth Surface109(F3), pp.1-18.

 

6-    Engelund, F., 1974. Flow and bed topography in channel bends. Journal of the Hydraulics Division, 100, pp.1631-1648.

 

7-    Engelund, F. and Hansen, E. 1967. A monograph on sediment transport in alluvial stream. Report Tekinsk Forlag. Technical Press. Copenhagen. Denmark.

 

8-    Ferguson, R., 2007. Flow resistance equations for gravel‐and boulder‐bed streams. Water Resources Research43(5).pp.1-12.

 

9-    Gleason, C.J., 2015. Hydraulic geometry of natural rivers: A review and future directions. Progress in Physical Geography39(3), pp.337-360.

 

10- Hey, R.D., 1979. Flow resistance in gravel-bed rivers. Journal of the Hydraulics Division105(4), pp.365-379.

11- Hey, R.D. and Thorne, C.R., 1986. Stable channels with mobile gravel beds. Journal of Hydraulic Engineering112(8), pp.671-689.

 

12- Huang, H. Q. 1996. Multivariate controls of alluvial channel geometry: model development and applications, Ph.D. thesis, University ofWollongong. 239p.

 

13- Huang, H.Q. and Nanson, G.C., 2000. Hydraulic geometry and maximum flow efficiency as products of the principle of least action. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group25(1), pp.1-16.

 

14- Hussein, A.S. and Smith, K.V., 1986. Row and bed deviation angle in curved open channels. Journal of Hydraulic Research24(2), pp.93-108.

 

15- Julien, P. Y. 1990. Downstream hydraulic geometry of alluvial channels. Engineering Research Center. Colorado State University. 31p.

 

16- Julien, P.Y., 2015. Downstream hydraulic geometry of alluvial rivers. Proceedings of the International Association of Hydrological Sciences367, pp.3-11.

 

17- Lane, E. W. 1935. Stable channels in erodible material. In Proceedings of the American Society of Civil Engineers, 270, pp.123-142.

 

18- Lee, H.E., Lee, C., Kim, Y.J., Kim, J.S. and Kim, W., 2013. Power law exponents for vertical velocity distributions in natural rivers. Engineering5(12), pp.933-942.

 

19- Leopold, L. B. and Maddock, T. J. 1953. The hydraulic geometry ofstream channels and some physiographic implications. US Geological Survey professional Pager 252.

 

20- Meyer-Peter, E. and Müller, R., 1948. Formulas for bed-load transport. In IAHSR 2nd meeting, Stockholm, appendix 2. IAHR.

 

21- Nanson, G.C. and Huang, H.Q., 2008. Least action principle, equilibrium states, iterative adjustment and the stability of alluvial channels. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group33(6), pp.923-942.

 

22- Powell, D.M., 2014. Flow resistance in gravel-bed rivers: Progress in research. Earth-Science Reviews136, pp.301-338.

 

23- Rozovskiĭ, I.L., 1957. Flow of water in bends of open channels. Academy of Sciences of the Ukrainian SSR.

 

24-Shahosainy, M., 2015. Analytical investigation of secondary flows hydraulic geometry function in meander rivers, Thesis, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Iran. 132p. (In Persian).

 

25-Simons, D.B. and Albertson, M.L., 1960. Uniform water conveyance channels in alluvial materials. Journal of the Hydraulics Division86(5), pp.33-71.

 

26-Singh, V.P., Yang, C.T. and Deng, Z.Q., 2003. Downstream hydraulic geometry relations: 1. Theoretical development. Water Resources Research39(12), pp.1-15.

 

27- Yalin, M.S., 2015. River mechanics. Elsevier. 213p.

 

28- Yang, C.T., 1996. Sediment transport: theory and practice. McGraw-Hill, New York. 396p.

 

29- Yuce, M.I., Esit, M. and Muratoglu, A., 2015. Determining the Hydraulic Geometry Parameters of Seyhan River. American Journal of Engineering, Technology and Society2(4), pp.77-84.