نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه مهندسی آب، دانشکده مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

2 استادیار، گروه مهندسی آب، دانشکده مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

3 دانشیار، گروه مهندسی آب، دانشکده مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

چکیده

تحقیقات اخیر نشان داده است که امکان استفاده از مدل متداول شماره منحنی (SCS-CN) در بسیاری از مناطق نمی­باشد. از این­رو مدل­های دیگری در این زمینه توسعه داده شده و می­بایست مورد ارزیابی مقایسه­ای قرار گیرند. هدف مطالعه حاضر مقایسه کارایی مدل میشرا-سینگ تک پارامتری، در مقایسه با مدل متداول شماره منحنی است. برای این منظور از داده­های بارش-رواناب پنج حوضه آبریز در استان گلستان استفاده شده است. معیارهای جذر میانگین مربعات خطا (RMSE)، ناش-ساتکلیف (NSE) و خطای دبی اوج (PEP) برای بررسی دقت شبیه­سازی هیدروگراف و دبی اوج مورد استفاده قرار گرفت. نتایج نشان داد در ۱۳ رگبار از ۱۴ رگبار مورد مقایسه، مدل میشرا- سینگ تک پارامتری، برآورد دقیق­تری از هیدروگراف و دبی اوج سیلاب دارد. این در حالی است که در یک رگبار باقی­مانده تفاوت نتایج دو مدل کوچک به­دست آمده است. میانگین معیارهای RMSE،  NSE و PEP در مدل متداول شماره منحنی SCS-CN برابر با 4/29، 9/35- و 98/0- و در مدل میشرا-سینگ تک پارامتری، به­ترتیب برابر با 19، 2/9- و 0 است.  

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessment of Developed 1-parameter Mishra-Singh Model for Flood Hydrograph Estimation

نویسندگان [English]

  • Sanaz Daei 1
  • Meysam Salarijazi 2
  • Khalil Ghorbani 3
  • Mahdi Meftah Halaghi 3

1 MSc Graduated, Water Engineering Department, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources.

2 Assistant Professor, Water Engineering Department, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources.(

3 Associate Professor, Water Engineering Department, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources.

چکیده [English]

There are various models for flood prediction that are based on different conceptual basis. The current SCS-CN model is a well-known model in this field that is widely used in Iran and other countries. Recent researches focuses on improvement of this model and improve its efficiency but it is necessary to evaluate the improved models for catchments of Iran. The objective of this study is the comparison of current SCS-CN and developed Mishra-Singh (One Parameter) models for flood hydrograph and peak estimation using data of five catchments in Golestan province.
 
Methodology
Study Area and Used Data
Five catchments (including Galikesh, Tamer, Kechik, Vatana and Nodeh) located in Golestan province were considered to evaluate different models for flood hydrograph estimation. The characteristics of the selected basins are presented in Table

کلیدواژه‌ها [English]

  • SCS-CN
  • 1-Parameter Mishra-Singh Model
  • Hydrograph
  • Peak Discharge
  • Golestan

1- Adib, A., Salarijazi, M., Vaghefi, M., Shooshatari, M.M. and AkhondAli, A.M., 2010a. Comparison between GcIUH-Clark, GIUH-Nash, Clark-IUH, and Nash-IUH models. Turkish Journal of Engineering and Environmental Sciences, 34(2), pp.91-104.

 2- Adib, A., Salarijazi, M. and Najafpour, K., 2010b. Evaluation of synthetic outlet runoff assessment models. Journal of Applied Sciences and Environmental Management, 14(3), pp.13-18.

3- Adib, A., Salarijazi, M., Shooshtari, M.M. and Akhondali, A.M., 2011. Comparison between characteristics of geomorphoclimatic instantaneous unit hydrograph be produced by GcIUH based Clark Model and Clark IUH model. Journal of Marine Science and Technology, 19(2), pp.201-209.

4- Ajmal, M., Khan, T.A. and Kim, T.W., 2016a. A CN-based ensembled hydrological model for enhanced watershed runoff prediction. Water, 8(1), pp.1-17.

5- Ajmal, M., Kim, T.W. and Ahn, J.H., 2016b. Stability assessment of the curve number methodology used to estimate excess rainfall in forest-dominated watersheds. Arabian Journal of Geosciences, 9(5), pp.1-14.

6- Bahrami, E., Mohammadrezapour, O., Salarijazi, M., Haghighat jou, Parviz. 2019. Effect of Base Flow and Rainfall Excess Separation on Runoff Hydrograph Estimation using Gamma Model (Case Study: Jong Catchment). KSCE Journal Civil Engineering, 23(3).1-7. https://doi.org/10.1007/s12205-019-0591-3

7- Bisantino, T., Bingner, R., Chouaib, W., Gentile, F. and Trisorio Liuzzi, G., 2015. Estimation of runoff, peak discharge and sediment load at the event scale in a medium‐size Mediterranean watershed using the AnnAGNPS model. Land Degradation & Development, 26(4), pp.340-355.

8- Daei, S., Salarijazi, M., Ghorbani, Kh., Meftah Halaghi, M. 2018 a.  Improvement of Estimation of Flood Hydrograph Using Modified Curve Number (non-linear Ia-S) Model. Ecohydrology, 5(3), pp.931-939. (In Persian).

9- Daei, S., Salarijazi, M., Ghorbani, Kh., Meftah Halaghi, M. 2018 b. Comparative Assessment of Conventional and Calibrated Curve Number Models in Flood and Runoff Estimation (Studied Catchments: Galikesh, Tamer, Nodeh, Kechik and Vatana in Golestan province). Iranian Journal of Irrigation and Drainage, 12(1), pp.143-152. (In Persian).

10- Derdour, A., Bouanani, A. and Babahamed, K., 2018. Modelling rainfall runoff relations using HEC-HMS in a semi-arid region: Case study in Ain Sefra watershed, Ksour Mountains (SW Algeria). Journal of Water and Land Development, 36(1), pp.45-55.

 11- Deshmukh, D.S., Chaube, U.C., Hailu, A.E., Gudeta, D.A. and Kassa, M.T., 2013. Estimation and comparision of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope. Journal of Hydrology, 492, pp.89-101.

 12- Eidipour, A., Akhondali, A.M., Zarei, H. and Salarijazi, M., 2016. Flood hydrograph estimation using GIUH model in ungauged karst basins (Case study: Abolabbas Basin). TUEXENIA, 36(36), pp.26-33.

 13- Ghorbani, Khalil.,  Salarijazi, Meysam ., Abdolhosseini, Mohammad., Eslamian, Saeid., Ahmadianfar, Iman. 2019. Evaluation of Clark IUH in rainfall-runoff modelling (case study: Amameh Basin). International Journal of Hydrology Science and Technology, 9(2), pp.137-153.

 14- Kumar, P., Kudrat, K., and Bubbar, S. 1994. Simulation of SCS runoff curve number from digital remote sensing data. International Conference on Land Resources Management, India.

 15- Lal, M., Mishra, S.K., Pandey, A., Pandey, R.P., Meena, P.K., Chaudhary, A., Jha, R.K., Shreevastava, A.K. and Kumar, Y., 2017. Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots. Hydrogeology Journal, 25(1), pp.151-167.

 16- Michel, C., Andréassian, V. and Perrin, C., 2005. Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure?. Water Resources Research, 41(2), pp.1-6.

 17- Mishra, S.K. and Singh, V.P., 1999. Another look at SCS-CN method. Journal of Hydrologic Engineering, 4(3), pp.257-264.

 18- Mishra, S.K. and Singh, V.P., 2002. SCS-CN-based hydrologic simulation package. Mathematical Models in Small Watershed Hydrology and Applications, 2841, pp.391-464.

19- Mishra, S.K., Jain, M.K. and Singh, V.P., 2004. Evaluation of the SCS-CN-based model incorporating antecedent moisture. Water Resources Management, 18(6), pp.567-589.

 20- Mishra, S.K., Sahu, R.K., Eldho, T.I. and Jain, M.K., 2006. An improved I a S relation incorporating antecedent moisture in SCS-CN methodology. Water Resources Management, 20(5), pp.643-660.

 21- Mishra, S.K. and Singh, V.P., 2013. Soil conservation service curve number (SCS-CN) methodology (Vol. 42). Springer Science and Business Media.

 22- Nardi, F., Annis, A. and Biscarini, C., 2018. On the impact of urbanization on flood hydrology of small ungauged basins: the case study of the Tiber river tributary network within the city of Rome. Journal of Flood Risk Management, 11, pp.S594-S603.

 23- Nash, J. E. and Sutcliffe, J. V., 1970. River flow forecasting through conceptual models.part I- A discussion of principles. Journal of Hydrology, 10(3), pp. 282-290.

 24- Sahu, R.K., Mishra, S.K., Eldho, T.I. and Jain, M.K., 2007. An advanced soil moisture accounting procedure for SCS curve number method. Hydrological Processes, 21(21), pp.2872-2881.

 25- Sahu, R.K., Mishra, S.K. and Eldho, T.I., 2010. Comparative evaluation of SCS-CN-inspired models in applications to classified datasets. Agricultural Water Management, 97(5), pp.749-756.

 26- Sahu, R.K., Mishra, S.K. and Eldho, T.I., 2012. Performance evaluation of modified versions of SCS curve number method for two watersheds of Maharashtra, India. ISH Journal of Hydraulic Engineering, 18(1), pp.27-36.

 27- Sharifi, A., Salarijazi, M., Ghorbani, Kh., 2018. Event-Oriented Runoff Estimation in Mountainous Basin by GSSHA Physically- Distributed Model. Ecohydrology, 4(4), pp.1215-1225.

 28- Shumei, Z. and Tingwu, L., 2011. Calibration of SCS-CN Initial Abstraction Ratio of a typical small watershed in the Loess Hilly-Gully region. China Agriculture Science.

 29- Suresh Babu, P. and Mishra, S.K., 2011. Improved SCS-CN–inspired model. Journal of Hydrologic Engineering, 17(11), pp.1164-1172.

 30- Tedela, N.H., McCutcheon, S.C., Rasmussen, T.C., Hawkins, R.H., Swank, W.T., Campbell, J.L., Adams, M.B., Jackson, C.R. and Tollner, E.W., 2011. Runoff curve numbers for 10 small forested watersheds in the mountains of the eastern United States. Journal of Hydrologic Engineering, 17(11), pp.1188-1198.