نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگر، مرکز تحقیقات و آموزش کشاورزی و منابع دانشجوی دکتری، گروه مهندسی آب، دانشگاه ارومیه، ارومیه، ایران.

2 استاد، گروه مهندسی آب، دانشگاه ارومیه، ارومیه، ایران

3 استاد، گروه مهندسی آب، دانشگاه ارومیه، ارومیه، ایران.

10.22055/jise.2017.22306.1598

چکیده

پیش­بینی عملکرد گیاهان راهبردی و برنامه­ریزی برای توسعه کشاورزی با شناخت و کمی نمودن میزان اثر متغیرهای مهم آب و هوایی بر تولید محصول در هر منطقه امکان­پذیر است. هدف این پژوهش تدوین مدل مناسب برای پیش­بینی عملکرد گندم ‏دیم به­کمک متغیرهای آب و هوایی در منطقه بیجار واقع در کردستان می­باشد. برای این منظور دوره رشد گندم دیم در منطقه به شش مرحله تقسیم و از متغیرهای آب و هوایی مربوط به پنج مرحله اول برای تعیین ساختار مدل استفاده شد. متغیرها شامل بارش، رطوبت نسبی، حداکثر و حداقل درجه­حرارت، ساعات آفتابی و سرعت باد با دوره آماری 25 ساله (1366 تا 1390) بودند. باتوجهبهتعدادزیادمتغیرهایآب و هوایی، برای شناسایی ‏عامل­هایی که نقش اصلی دارند، از روش تجزیه به مؤلفه اصلی استفادهشد. با استفاده از روش ‏رگرسیون چندمتغیره و عامل­های اصلی شناسایی­شده، مدل تخمین میزان عملکرد گندم دیم تدوین شد. نتایج تحلیل­ها نشان داد با هشت مؤلفه می­توان 85 درصد از واریانس کل 30 متغیر آب و هوایی مربوط به پنج مرحله دوره رشد گندم دیم در منطقه بیجار را توجیه نمود.      هم­چنین تحلیل رگرسیون چندمتغیره نشان داد با این هشت عامل می­توان 6/84 درصد از تغییرات عملکرد گندم را توجیه و مدل­سازی نمود (92/0R=). در میان عامل­ها نیز عامل مربوط به متغیرهای آب و هوایی مرحله رشد زایشی گندم دیم بیشترین نقش را در تولید محصول منطقه بیجار ایفا نمود. درصد خطای مدل در برآورد عملکرد گندم دیم منطقه برای سال­های 1391، 1392 و 1393 به­ترتیب 11، 68/9 و 8/15 درصد به­دست آمد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Climatic Variables on Agriculture (Case Study: Rainfed Wheat Yield)

نویسندگان [English]

  • Homayoun Faghih 1
  • Javad Behmanesh 2
  • Hossein Rezaie 3

1 Researcher, Agriculture and Natural Resources Research and Education Center of Kurdistan, AREEO, Sanandaj, Iran and Ph.D. Student, University of Urmia, Urmia, Iran.

2 Professor, Department of Water Engineering, University of Urmia, Urmia, Iran.

3 Professor, Department of Water Engineering, University of Urmia, Urmia, Iran.

چکیده [English]

The yield of rainfed crops depends on climatic parameters, plant genetic characteristics, soil type and agricultural operations (Hosaini et al., 2007). Among these factors, climatic variables have a stochastic nature. Therefore, it is important to investigate the effect of the mentioned parameters on the variability of the crop plants yield.
The correct identification of the climatic conditions will help farmers to timely sow and supply plant requirement during the growing season (Azizi and Yarahmadi, 2003). Also, predicting the yield of strategic plants (such as wheat) will be possible via identify and quantify the effects of the important climatic variables on crop production in each region (Bazgeer and Kamali, 2008).
Kordestan is one of the most important rainfed agricultural regions in Iran. Bijar, with a production about 123,000 tons of rainfed wheat per year, is one of the most important regions to product rainfed wheat in Kurdistan. The maximum and minimum yield of rainfed wheat in Bijar during a 25-year period has been between 1380 and 213 (kg/ha), respectively (Anonymous, 2015). This large range of yield changes has had a significant impact on the region's economy. The present research was carried out with the aim of identifying important climatic factors in Bijar region and developing a model for estimating rainfed wheat yield based on these factors. The results of this research can be useful in developing quantitative and qualitative agricultural products and sustainable use of resources.

کلیدواژه‌ها [English]

  • Climate
  • Resources Management
  • Planning
  • Development
  • Factor Analysis
  • Kordestan

1-Anonymous, 2015. Crops census project. Jihad-e-Agriculture Organization of Kurdistan province. (In Persian).

 2- Azizi, G. and Safarkhani, E., 2002. Drought evaluation and its effect on dryland wheat yield in Ilam province with an emphasis on recent droughts. Journal of Modares, 6(2), pp. 61-76. (In Persian).

 3- Azizi, G. and Yarahmadi, D., 2003. Investigation of relationship between climatic parameters and wheat yield using regression model (case study: Silakhor plain). Geographic Research, (44), pp. 23-29. (In Persian).

 4- Bal, S., Mukherjee, J., Mallick, K. and Hundal, S.S., 2004. Wheat yield forecasting models for Ludhiana district of Punjab state. Journal of Agrometeorology, 6, pp. 161-165.

 5- Bazgeer, S., 2005. Land use change analysis in the sub mountainous region of Punjab using remote sensing, GIS and agrometeorological parameters. Ph.D. Dissertation. Punjab Agricultural University (PAU), Ludhiana, India, 128p.

 6-Bazgeer, S. and Kamali, G.A., 2008. Wheat yield prediction using agro meteorological indices for some regions of the Western of the country. Journal of Agricultural Sciences and Natural Resources, 15(2), pp. 113-121. (In Persian).

 7- Bazgeer, S., Kamali, G., Sedaghatkerdar, A. and Moradi, A., 2008. Pre-harvest wheat yield prediction using agrometeorological indices for different regions of Kurdistan province, Iran. Research Journal of Environmental Sciences, 2(4), pp. 275-280.

 8- Ceglar, A., Toreti, A., Lecerf, R., Van der Velde, M., Dentener, F., 2016. Impact of meteorological drivers on regional inter-annual crop yield variability in France. Agricultural and Forest Meteorology, 216, pp. 58-67.

 9- Esfandiary, F., Aghaie, G. and Dolati Mehr, A., 2009. Wheat yield prediction through agrometeorological indices for Ardebil district. World Academy of Science, Engineering and Technology, 49, pp. 32-35.

 10- Faghih, H., 2015. Investigating the effect of rainfall changes on rainfed wheat performance in Saqqez county. In 1th International Congress of Healthy Agriculture, Healthy Nutrition and Sane Society, Agricultural Research, Education And Extention Organization (AREEO), Tehran, Iran. (In Persian).

 11-   Faghih, H. and Rezaie, H., 2016. Resource Management by Modeling Climate Change. In 2th International Conference in New Research on Civil, Architectural and Urban management, Amirkabir University of Technology, Tehran, Iran. (In Persian).

 12-   Farajzadeh, M., Khoorani, A., Bazgeer, S. and Zeaeian, P., 2011. Modeling and predicting of rainfed wheat Yield in attention to phenological phases of plant growth (a case study for Kurdistan province). Physical Geography Research, 43(76), pp. 21-34. (In Persian).

 13-   Farshadfar, E., 2005. Multivariate principles and procedures of statistics. Taq-e Bostan. (In Persian).

 14-   Ghorbani, K., Khalili, A. and Iran Nejad, P., 2008. Regional estimation of rainfed wheat yield based on precipitation data. Journal of Agricultural Research, 8(1), pp. 89-101. (In Persian).

 15-   Hosaini, M.T., Siosemarde, A., Fathi, P. and Siosemarde, M., 2007. Application of artificial neural network (ANN) and multiple regression for estimating assessing the performance of dry farming wheat yield in Ghorveh region, Kurdistan province. Journal of Agricultural Research, 7(1), pp. 41-54. (In Persian).

 16-Karamouz, M. and Araghinejad, S., 2005. Advanced hydrology. Tehran Polytechnic. (In Persian).

 17-Lee, B., Kenkel, P. and Wade Brorsen, B., 2013. Pre-harvest forecasting of county wheat yield and wheat quality using weather information. Agricultural and Forest Meteorology, 168, pp. 26-35.

 18-   Mahdavi, M., 1998. Applied hydrology. Tehran University. (In Persian).

 19-   Momeni, M. and Ghayoumi, A.F., 2015. Statistical analysis with SPSS. New book. (In Persian).

 20-   Nassiri, M., Koochechi, A., Kamali, G. and Shahandeh, H., 2006. Potential impact of climate change on rainfed wheat production in Iran. Archives of Agronomy and Soil Science, 52(0), pp. 1-12.

 21-   Patra, K.C., 2001. Hydrology and water resources engineering. New Delhi, Narosa Publishing House.

 22-   Qian, B., Jong, R., Warren, R., Chipanshi, A. and Hill, H., 2009. Statistical spring wheat yield forecasting for the Canadian Prairie provinces. Agricultural and Forest Meteorology, 149, pp. 1022-1031.

 23-   Sabziparvar, A.A., Torkaman, M. and Maryanaji, Z., 2013. Investigating the effect of agroclimatic indices and variables on optimum wheat performance (case study: Hamedan province). Journal of Water and Soil, 26(6), pp. 1554-1567. (In Persian).

 24-   Smith, R., Adams, J., Stephens, D. and Hick, P., 1995. Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Australian Journal of Agriculture Research, 46(1), pp. 113-125.

 25-   Talliee, A.A. and Bahramy, N., 2003. The effects of rainfall and temperature on the yield of dryland wheat in Kermanshah province. Journal of Soil and Water Science, 17(1), pp. 106-112. (In Persian).

 26-   Vashisth, A., Singh, R. and Choudary, M., 2014. Crop yield forecast at different growth stage of wheat crop using statistical model under semi-arid region. Journal of Agroecology and Natural Resource Management, 1(1), pp. 1-3.