Evaluating the Efficacy of Aquacrop Model Performance in Simulating Soybean Yield (Williams Cultivar) in Golestan Province Under Salt Stress Caused by Caspian Sea Water and Different Levels of Irrigation

E. Shabani¹, M. Zakerinia²* and M. Hesam³

1-MSc student in Irrigation and Drainage, Water Engineering Department, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran.
2* - Corresponding Author, Associate Professor, Water Engineering Department, College of Water and Soil, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran. (mzakerinia@gmail.com).
3 - Associate Professor, Water Engineering Department, College of Water and Soil, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran.

Received: 22 August 2016 Revised: 9 September 2017 Accepted: 11 September 2017

Keywords: Biomass, Salinity, Water deficit, Water Productivity. DOI: 10.22055/jise.2017.18343.1332.

Introduction
Scarcity of water resources in the entire country is more serious in the northern provinces like Golestan. Therefore, farmers have to use saline water or waste waters. One way to adapt to this condition is to use unconventional water such as Caspian Sea water, with lower salinity as compared with water from free seas, for common crops like soybean. Thus feasibility of using Caspian Sea water that has integrated with narrow common water and the calibration of Aquacrop model under the effect of salinity and water stress for soybean crop in Golestan province are more important. The Aquacrop model assumes a linear relationship between the biomass yield (BY) and crop transpiration one one hand and water productivity (WP) value on the other (Steduto and Albrizio, 2005). This model, as compared to other crop models, requires minimal input data and its new version 4.0 (June, 2012) has a salinity module which was used in this research to simulate the grain yield (GY) and WP of soybean under deficit and saline water irrigation. Furthermore, the AquaCrop model has not often been tested to simulate the yield of soybean under saline conditions in the semi-arid climate of Golestan province. This study aims at evaluating the efficiency of AquaCrop model in soybean yield simulation. The results are to be used for optimizing water consumption under water and saline stress. To this end, an experiment was carried out at the research farm of Gorgan University of Agricultural Sciences and Natural Resources.

Methodology
Site description
The experimental area for this study was the research farm of Gorgan University of Agricultural sciences and Natural Resources. The study was conducted in summer. The experimental farm is located between 54° 27’ 06” E longitude and 36° 58’ 25” N latitude at an average elevation of 13 m above sea level.
Field managements

The experiment was laid in randomized complete block design (RCBD) in split plots. Three irrigation levels of 75%, 100% and 125% of crop water requirement and three salinity levels of 0.6 dS/m, 5 dS/m (salinity threshold tolerated by soybean) and 8dS/m (over the threshold) were considered in three replications in basins with 3 x 3 meters surface and totally 27 plots with an area 9 m² each. The spacing between plants in each row was 35-40 cm and the spacing between the rows was 7 cm. The Caspian Sea water (ECw: 31.2 dS/m) was mixed with an appropriate proportion of well water (ECw: 0.86 dS/m) to prepare the water with desired salinity (5 and 8 dS/m).

The AquaCrop model

The Aquacrop model needs different input parameters including the data regarding climate, crop, soil, and field management. Using data of full irrigation level and no salinity, the AquaCrop model was calibrated for soybean in Gorgan. The model simulation results of soybean GY, BY and WP were compared with the actual data from the field experiment during the calibration process. The goodness of fit between the simulated and actual data was confirmed using the coefficient of determination statistics. The coefficient of determination (R²), mean absolute error (MAE), root mean square error (RMSE), and model efficiency (E) were applied as the model evaluation for the calibration process. The R² and E were applied to achieve the predictive power of the model while the MAE and RMSE indicated the error in model estimation.

Results and Discussion

Irrigation water depth, crop water use, grain yield, above Aerial biomass, (WP) and irrigation water use efficiency (IWUE) under different irrigation levels (75, 100 and 125 percent) are shown in Table 1. The lowest grain yield and biomass were observed to be 2.03 and 2.63 (ton/ha) in I₃S₃ treatment and the highest were 8.14 and 13.4 (ton/ha) under I₂S₁ treatment, respectively. Water productivity (WP) ranged from a minimum of 6.06 (Kg/m³) to a maximum of 29.82 (Kg/m³). Water productivity for full irrigation with no salinity (I₂S₁) was the highest, whereas this parameter for I₃S₃ treatment was the lowest.

Table 1- Grain yield and above ground biomass, water productivity (WP), irrigation water use efficiency (IWUE) under different irrigation levels and salinity

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Irrigation level 75%(I₁)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irrigation water (mm)</td>
<td>Crop water use (mm)</td>
<td>Grain yield (ton/ha)</td>
<td>Biomass (ton/ha)</td>
<td>Wp (Kg/m³)</td>
<td>IWUE (Kg/m³)</td>
</tr>
<tr>
<td>I₃S₁</td>
<td>187</td>
<td>210</td>
<td>6.01</td>
<td>7.87</td>
<td>28.62</td>
<td>32.14</td>
</tr>
<tr>
<td>I₃S₂</td>
<td>187</td>
<td>210</td>
<td>3.84</td>
<td>4.57</td>
<td>18.29</td>
<td>20.53</td>
</tr>
<tr>
<td>I₃S₃</td>
<td>187</td>
<td>210</td>
<td>3.25</td>
<td>3.71</td>
<td>15.48</td>
<td>17.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Irrigation level 100%(I₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₂S₁</td>
</tr>
<tr>
<td>I₂S₂</td>
</tr>
<tr>
<td>I₂S₃</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Irrigation level 125%(I₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₃S₁</td>
</tr>
<tr>
<td>I₃S₂</td>
</tr>
<tr>
<td>I₃S₃</td>
</tr>
</tbody>
</table>
Table 2- Evaluation of the Aquacrop model for biomass simulation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Biomass Observed (Ton/ha)</th>
<th>Biomass Simulated (Ton/ha)</th>
<th>RMSE</th>
<th>E</th>
<th>MAE</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁S₁</td>
<td>7.87</td>
<td>8.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₁S₂</td>
<td>4.57</td>
<td>5.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₁S₃</td>
<td>3.71</td>
<td>4.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂S₁</td>
<td>13.4</td>
<td>13.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂S₂</td>
<td>11.15</td>
<td>11.94</td>
<td>0.95</td>
<td>0.92</td>
<td>0.87</td>
<td>0.9895</td>
</tr>
<tr>
<td>I₂S₃</td>
<td>10.02</td>
<td>10.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₃S₁</td>
<td>7.13</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₃S₂</td>
<td>5.01</td>
<td>6.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₃S₃</td>
<td>2.63</td>
<td>3.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3- Evaluation of the Aquacrop model for grain yield simulation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Grain yield Observed (Ton/ha)</th>
<th>Grain yield Simulated (Ton/ha)</th>
<th>RMSE</th>
<th>E</th>
<th>MAE</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁S₁</td>
<td>6.01</td>
<td>6.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₁S₂</td>
<td>3.83</td>
<td>4.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₁S₃</td>
<td>3.25</td>
<td>3.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂S₁</td>
<td>8.14</td>
<td>8.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂S₂</td>
<td>6.82</td>
<td>7.56</td>
<td>0.4</td>
<td>0.95</td>
<td>0.33</td>
<td>0.9865</td>
</tr>
<tr>
<td>I₂S₃</td>
<td>6.15</td>
<td>6.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₃S₁</td>
<td>6.07</td>
<td>6.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₃S₂</td>
<td>4.47</td>
<td>4.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₃S₃</td>
<td>2.03</td>
<td>2.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AquaCrop model

The observed and simulated data of GY and BY for all treatment combinations are shown in Tables (2,3). As observed in Tables (2) and (3), the model was calibrated for simulation of GY and BY for all treatment levels 0.93< E<0.97, 0.4<RMSE<0.95, 0.33<MAE<0.87 (ton/ha) and 0.986< R²<0.989. Based on the results, it is clear that the simulation of grain yield has a higher accuracy compared to biomass. Also, by increasing the applied stress level, the simulation error of model would be higher so that the prediction error in treatment I₁S₃, I₂S₃ and I₃S₃ is the greatest and, totally, the best simulation in grain yield and biomass is for the I₂S₁ treatment. The I₃S₁ treatment, on the other hand, has the most fouls. It can be concluded that the effect of salinity stress on grain yield and biomass is more than the effect of drought stress.

Conclusions

AquaCrop model was calibrated for GY and BY under different irrigated saline levels and three irrigation depths. The model calibration results for GY and BY were in line with the actual values as evidenced from the prediction error statistics. However, the GY and BY for all treatments was over-predicted by the AquaCrop model. We conclude that the accuracy of the AquaCrop model for GY and BY simulation in water stress condition is better compared to salinity stress condition. Nonetheless, from the comparison between the results of the experiment and modeling, it can be concluded that the AquaCrop model can be used to estimate the soybean yield with appropriate accuracy under varying depths and saline irrigation water.
References

© 2019 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY 4.0 license) (https://creativecommons.org/licenses/by/4.0/).
آزمایش کارایی مدل Aquacrop در شبیه‌سازی عملکرد گیاه سویا رقم ویژه‌ای در استان گلستان تحت تنش شوری ناشی از آب دریا خز و سطوح مختلف آبیاری

اسمالک شعبانی، مهندس آب و هوایی گیاهان

چکیده

یکی از راه‌هایی سازگاری با کاهش مصرف آب استفاده از منابع آب نامتعارف. توزیع آب دریایی یا خشکی از طریق تغییر خطای شرایط مختلف آب و هوایی در زمینه‌های مختلفی تأثیرگذار است. برای کاهش ضریب توقف و بهبود کارایی آب‌رسانی، استفاده از مدل‌های شبیه‌سازی مصرف آب و تنش شوری برای گیاهان در منابع مصرف‌رسانی آب مورد مطالعه قرار گرفته است. در این مطالعه، مدل‌های شبیه‌سازی Aquacrop و Water Use Efficiency به کار برده شد. نتایج نشان می‌دهد که استفاده از مدل‌های شبیه‌سازی مصرف آب و تنش شوری برای گیاهان بهبود کارایی آب‌رسانی می‌تواند منجر به کاهش ضریب توقف و بهبود کارایی آب‌رسانی در منابع مصرف‌رسانی آب گردد.

مقدمه

نزولات آبی اندک در اقتصاد نامناسب از نظرات و دی‌گر طرح‌های بالا، موجب تنش خشکی در طول فصل رشد گیاهان زراعی مناطق خشک شکل شده است. از این رو، سیستم‌های شبیه‌سازی مصرف آب و تنش شوری به عنوان ابزاری پژوهشی و عملکرد آب‌رسانی در منابع مصرف‌رسانی آب به عنوان روشی موثر در بهبود کارایی آب‌رسانی در منابع مصرف‌رسانی آب به‌کار گرفته شده است.

کلید و ازدحام: شبیه‌سازی، آب‌رسانی، آب‌رسانیت، آب‌رسانی کشاورزی، آب‌رسانی کشاورزی - تولید خریداری
رشته فنی به صورت حجمی نیز وجود دارد که در صورت سعی بر روی پژوهشکده، ریشه بیشتری از تحقیقات منابع آبی در گونه‌های کاستی استفاده کرده است. روش گاهی ای از مایه‌های آب‌ریزه‌سازی، شرکت صنعت‌گرایانه و نحوه بروز گام‌هایی از نظر حفظ آب‌ریزه‌سازی‌ها در مدیریت و استفاده از منابع آبی در تهیه محصولات قابل قبول بوده است. (Abedinpour et al., 2010) یکی از این مدل‌ها مدل AquaCrop است که دارای شوری حدود یک سوم آب دریاهای آزاد است. این مدل با فرمول بالا قابلیت پیش‌بینی عملکرد محصولات در این شرایط را دارد.

AquaCrop در این شرایط از شناسایی و ارزیابی تغییرات محیطی بهره می‌برد و نتایج حاصل از استفاده از آن در شرایط مختلف کشاورزی بهبود گذاشته شده است. (Kaniaan et al., 2012) این مدل با استفاده از تحقیقات موجود در این انتخاب، یکی از بهترین مدل‌های محاسباتی است. (Kinaan et al., 2012)
سیویتیک هاشم‌آباد که در ترکیب مزرعه واقع شده است، دریافت شد. تیمارهای 1، 2، 3، 4، 5 و 6 ترتیبی به شرح ذیل داشته‌اند:

<table>
<thead>
<tr>
<th>ماه</th>
<th>میانگین نسبت آب و نسبت ظرفیت درشت</th>
<th>میانگین نسبت ظرفیت درشت</th>
<th>میانگین نسبت ظرفیت درشت</th>
<th>میانگین نسبت ظرفیت درشت</th>
<th>میانگین نسبت ظرفیت درشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظرفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظرفیت درشت</td>
<td>میانگین نسبت ظرفیت درشت</td>
<td>میانگین نسبت ظروفیت درشت</td>
<td>میانگین نسبت ظروفیت درشت</td>
<td>میانگین نسبت ظروفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشت</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشت</td>
<td>میانگین نسبت ظروفیت درشت</td>
<td>میانگین نسبت ظروفیت درشه</td>
<td>میانگین نسبت ظروفیت درشه</td>
<td>میانگین نسبت ظروفیت درشه</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشه</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشه</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشه</td>
</tr>
<tr>
<td>ماه</td>
<td>میانگین نسبت ظروفیت درشه</td>
</tr>
</tbody>
</table>
| ماه | میانگین نسبت ظروفیت درشه | میانگی
IWUE (Irrigation Water Use Efficiency) می‌باشد و نسبت ماده شکل تولیدی به حجم آبیاری است.

در این تحقیق برای مقایسه نتایج شیپسی مدل با نتایج مثلثی از نیمه‌ای آماری روش میانگین حداقل مربعات (Nash-Sutcliffe E)، ضریب کارایی نشان‌دهنده GSD (General Standard Deviation) GSD و ضریب تهیه (Mean Absolute Error) MAE می‌باشد.

VIUE پارامتری برای اندازه‌گیری کارایی (Irrigation Water Use Efficiency) است که حدود ۰.۲ تا ۰.۹۴ و در این مطالعه به شرح زیر می‌باشد.

\[\text{VIUE} = \frac{\sum (A_i - B_i)^2}{N} \]

در این رابطه A_i مقادیر محاسبه‌شده توسط مدل، Waqif و N شانه‌دهنده مقدار متوسط مدل، Waqif یا نتایج به داده‌های موجود در منطقه‌ای که کمبود آب و باعث دریافت نتایج در منطقه می‌باشد.

\[\text{GSD} = \frac{\text{RMSE}}{B} \]

که در آن B میانگین می‌باشد. میانگین خطای قدر مطلق نیز از رابطه ۵ به‌دست می‌آید.

\[\text{MAE} = \frac{\sum |A_i - B_i|}{N} \]
که Ai مقادیر محاسبه شده توسط مدل Bi و N مقدار محاسبه شده توسط مشاهده مدل، همچنین از ضریب تبعیت استفاده شد. ضریب تبعیت عبارت است از تعداد مشاهده از این روابط R، ضریب تبعیت به عنوان یک یک ضریب ثابت است. R بین صفر و یک می‌باشد و یک بزرگ‌تر از شدگی سازی شده و واقعی نسبت به هم دارای خواص مطلوبی است:

\[
R^2 = \left(\frac{\sum_{i=1}^{n}(Y_i - \bar{X})(Y_i - \bar{Y})^2}{\sum_{i=1}^{n}(Y_i - \bar{X})^2 \sum_{i=1}^{n}(Y_i - \bar{Y})^2} \right)
\]

جدول 4- عملکرد دانه و بیوماس گیاه سویا در سطوح مختلف آبیاری و شوری

Table 4- grain yield and biomass in different irrigation and salinity levels

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Irrigation water</th>
<th>Crop water use</th>
<th>Grain yield</th>
<th>Biomass</th>
<th>Wp</th>
<th>IWUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation level 75%(I1)</td>
<td>(mm)</td>
<td>(mm)</td>
<td>ton/ha</td>
<td>ton/ha</td>
<td>Kg/m³</td>
<td>Kg/m³</td>
</tr>
<tr>
<td>S1</td>
<td>187</td>
<td>210</td>
<td>6.01</td>
<td>7.87</td>
<td>28.62</td>
<td>32.14</td>
</tr>
<tr>
<td>S2</td>
<td>187</td>
<td>210</td>
<td>3.84</td>
<td>4.57</td>
<td>18.29</td>
<td>20.53</td>
</tr>
<tr>
<td>S3</td>
<td>187</td>
<td>210</td>
<td>3.25</td>
<td>3.71</td>
<td>15.48</td>
<td>17.38</td>
</tr>
<tr>
<td>Irrigation level 100%(I2)</td>
<td>(mm)</td>
<td>(mm)</td>
<td>ton/ha</td>
<td>ton/ha</td>
<td>Kg/m³</td>
<td>Kg/m³</td>
</tr>
<tr>
<td>S1</td>
<td>250</td>
<td>273</td>
<td>8.14</td>
<td>13.4</td>
<td>29.82</td>
<td>32.56</td>
</tr>
<tr>
<td>S2</td>
<td>250</td>
<td>273</td>
<td>6.82</td>
<td>11.15</td>
<td>24.98</td>
<td>27.28</td>
</tr>
<tr>
<td>S3</td>
<td>250</td>
<td>273</td>
<td>6.15</td>
<td>10.02</td>
<td>22.53</td>
<td>24.60</td>
</tr>
<tr>
<td>Irrigation level 125%(I3)</td>
<td>(mm)</td>
<td>(mm)</td>
<td>ton/ha</td>
<td>ton/ha</td>
<td>Kg/m³</td>
<td>Kg/m³</td>
</tr>
<tr>
<td>S1</td>
<td>312</td>
<td>335</td>
<td>6.07</td>
<td>7.13</td>
<td>18.12</td>
<td>19.46</td>
</tr>
<tr>
<td>S2</td>
<td>312</td>
<td>335</td>
<td>4.47</td>
<td>5.01</td>
<td>13.34</td>
<td>14.33</td>
</tr>
<tr>
<td>S3</td>
<td>312</td>
<td>335</td>
<td>2.03</td>
<td>2.63</td>
<td>6.06</td>
<td>6.51</td>
</tr>
</tbody>
</table>

جدول 5- پارامترهای که به آنها وارد شده در مدل

Table 5- Plant parameters that given to the model

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
<th>Measured</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Spacing</td>
<td>35</td>
<td>Cm</td>
<td></td>
</tr>
<tr>
<td>Plant Spacing</td>
<td>2014/6/11</td>
<td>Cm</td>
<td></td>
</tr>
<tr>
<td>Planting</td>
<td>2014/6/20</td>
<td>Day</td>
<td></td>
</tr>
<tr>
<td>Sprout</td>
<td>2014/10/21</td>
<td>Cm</td>
<td></td>
</tr>
<tr>
<td>Harvesting</td>
<td>Maximum canopy cover</td>
<td>70</td>
<td>%</td>
</tr>
<tr>
<td>Maximum canopy cover time</td>
<td>72</td>
<td>Day</td>
<td></td>
</tr>
<tr>
<td>Maximum deep root</td>
<td>155</td>
<td>Cm</td>
<td></td>
</tr>
<tr>
<td>Maximum deep root time</td>
<td>92</td>
<td>Day</td>
<td></td>
</tr>
<tr>
<td>Reduce canopy cover</td>
<td>104</td>
<td>Day</td>
<td></td>
</tr>
</tbody>
</table>
کیاه قبل واسنجی است. پس از واسنجی، در سطوح مختلف آبیاری و شوری، عملکرد مجموعه سیستم‌های اندازه‌گیری شده از مزرعه مقایسه کردنی (جدول 2)، با توجه به این نتایج، شیب‌سازی مدل داده نسبت به عملکرد یک سیستم می‌باشد. این چنین در قسمت خصوصیات گیاهی و به صورت سعی و خطا انجام شد. تا مدل نسبت به حالت مزرعه نزدیک شود و برای اقليم گرگان و رقم ویلیامز منطبق گردد. پارامترهای گیاهی وارد شده در مدل در جدول (5) و نتایج واسنجی پارامترهای مدل در جدول (6) ارائه گردید. در مدل AquaCrop برخی از پارامترهای خصوصیات گیاهی با توجه به خصوصیات اقليمی و نوع گیاه قابل واسنجی است. پس از واسنجی، در سطوح مختلف آبیاری و شوری، عملکرد مجموعه سیستم‌های اندازه‌گیری شده از مزرعه مقایسه کردنی (جدول 2)، با توجه به این نتایج، شیب‌سازی مدل داده نسبت به عملکرد یک سیستم می‌باشد. این چنین در قسمت خصوصیات گیاهی و به صورت سعی و خطا انجام شد. تا مدل نسبت به حالت مزرعه نزدیک شود و برای اقليم گرگان و رقم ویلیامز منطبق گردد. پارامترهای گیاهی وارد شده در مدل در جدول (5) و نتایج واسنجی پارامترهای مدل در جدول (6) ارائه گردید. در مدل AquaCrop برخی از پارامترهای خصوصیات گیاهی با توجه به خصوصیات اقليمی و نوع گیاه قابل واسنجی است. پس از واسنجی، در سطوح مختلف آبیاری و شوری، عملکرد مجموعه سیستم‌های اندازه‌گیری شده از مزرعه مقایسه کردنی (جدول 2)، با توجه به این نتایج، شیب‌سازی مدل داده نسبت به عملکرد یک سیستم می‌باشد. این چنین در قسمت خصوصیات گیاهی و به صورت سعی و خطا انجام شد. تا مدل نسبت به حالت مزرعه نزدیک شود و برای اقليم گرگان و رقم ویلیامز منطبق گردد. پارامترهای گیاهی وارد شده در مدل در جدول (5) و نتایج واسنجی پارامترهای مدل در جدول (6) ارائه گردید. در مدل AquaCrop برخی از پارامترهای خصوصیات گیاهی با توجه به خصوصیات اقليمی و نوع گیاه قابل واسنجی است. پس از واسنجی، در سطوح مختلف آبیاری و شوری، عملکرد مجموعه سیستم‌های اندازه‌گیری شده از مزرعه مقایسه کردنی (جدول 2)، با توجه به این نتایج، شیب‌سازی مدل داده نسبت به عملکرد یک سیستم می‌باشد. این چنین در قسمت خصوصیات گیاهی و به صورت سعی و خطا انجام شد. تا مدل نسبت به حالت مزرعه نزدیک شود و برای اقليم گرگان و رقم ویلیامز منطبق گردد. پارامترهای گیاهی وارد شده در مدل در جدول (5) و نتایج واسنجی پارامترهای مدل در جدول (6) ارائه گردید. در مدل AquaCrop برخی از پارامترهای خصوصیات گیاهی با توجه به خصوصیات اقليمی و نوع گیاه قابل واسنجی است. پس از واسنجی، در سطوح مختلف آبیاری و شوری، عملکرد مجموعه سیستم‌های اندازه‌گیری شده از مزرعه مقایسه کردنی (جدول 2)، با توجه به این نتایج، شیب‌سازی مدل داده نسبت به عملکرد یک سیستم می‌باشد. این چنین در قسمت خصوصیات گیاهی و به صورت سعی و خطا انجام شد. تا مدل نسبت به حالت مزرعه نزدیک شود و برای اقليم گرگان و رقم ویلیامز منطبق گردد. پارامترهای گیاهی وارد شده در مدل در جدول (5) و نتایج واسنجی پارامترهای مدل در جدول (6) ارائه گردید. در مدل AquaCrop برخی از پارامترهای خصوصیات گیاهی با توجه به خصوصیات اقليمی و نوع گیاه قابل واسنجی است. پس از واسنجی، در سطوح مختلف آبیاری و شوری، عملکرد مجموعه سیستم‌های اندازه‌گیری شده از مزرعه مقایسه کردنی (جدول 2)، با توجه به این نتایج، شیب‌سازی مدل داده نسبت به عملکرد یک سیستم می‌باشد. این چنین در قسمت خصوصیات گیاهی و به صورت سعی و خطا انجام شد. تا مدل نسبت به حالت مزرعه نزدیک شود و برای اقليم گرگان و رقم ویلیامز منطبق گردد. پارامترهای گیاهی وارد شده در مدل در جدول (5) و نتایج واسنجی پارامترهای مدل در جدول (6) ارائه گردید. در مدل AquaCrop برخی از پارامترهای خصوصیات گیاهی با توجه به خصوصیات اقليمی و نوع گیاه قابل واسنجی است.

جدول ۶- پارامترهای واسنجی شده در مدل AquaCrop

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Treatment</th>
<th>Calibrated values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water productivity (WP)</td>
<td>I_1S_1</td>
<td>15</td>
<td>gr/m3</td>
</tr>
<tr>
<td>Reference harvest index (HI)</td>
<td>I_1S_1</td>
<td>80</td>
<td>%</td>
</tr>
<tr>
<td>Max. crop canopy (CCX)</td>
<td>I_1S_1</td>
<td>66</td>
<td>%</td>
</tr>
<tr>
<td>Water productivity (WP)</td>
<td>I_1S_2</td>
<td>15</td>
<td>gr/m3</td>
</tr>
<tr>
<td>Reference harvest index (HI)</td>
<td>I_1S_2</td>
<td>78</td>
<td>%</td>
</tr>
<tr>
<td>Max. crop canopy (CCX)</td>
<td>I_1S_2</td>
<td>57</td>
<td>%</td>
</tr>
<tr>
<td>Water productivity (WP)</td>
<td>I_1S_3</td>
<td>15</td>
<td>gr/m3</td>
</tr>
<tr>
<td>Reference harvest index (HI)</td>
<td>I_1S_3</td>
<td>68</td>
<td>%</td>
</tr>
<tr>
<td>Max. crop canopy (CCX)</td>
<td>I_1S_3</td>
<td>56</td>
<td>%</td>
</tr>
<tr>
<td>Water productivity (WP)</td>
<td>I_2S_1</td>
<td>18</td>
<td>gr/m3</td>
</tr>
<tr>
<td>Reference harvest index (HI)</td>
<td>I_2S_1</td>
<td>66</td>
<td>%</td>
</tr>
<tr>
<td>Max. crop canopy (CCX)</td>
<td>I_2S_1</td>
<td>98</td>
<td>%</td>
</tr>
<tr>
<td>Water productivity (WP)</td>
<td>I_2S_2</td>
<td>19</td>
<td>gr/m3</td>
</tr>
<tr>
<td>Reference harvest index (HI)</td>
<td>I_2S_2</td>
<td>63</td>
<td>%</td>
</tr>
<tr>
<td>Max. crop canopy (CCX)</td>
<td>I_2S_2</td>
<td>69</td>
<td>%</td>
</tr>
<tr>
<td>Water productivity (WP)</td>
<td>I_2S_3</td>
<td>17</td>
<td>gr/m3</td>
</tr>
<tr>
<td>Reference harvest index (HI)</td>
<td>I_2S_3</td>
<td>63</td>
<td>%</td>
</tr>
<tr>
<td>Max. crop canopy (CCX)</td>
<td>I_2S_3</td>
<td>70</td>
<td>%</td>
</tr>
<tr>
<td>Water productivity (WP)</td>
<td>I_3S_1</td>
<td>15</td>
<td>gr/m3</td>
</tr>
<tr>
<td>Reference harvest index (HI)</td>
<td>I_3S_1</td>
<td>74</td>
<td>%</td>
</tr>
<tr>
<td>Max. crop canopy (CCX)</td>
<td>I_3S_1</td>
<td>68</td>
<td>%</td>
</tr>
<tr>
<td>Water productivity (WP)</td>
<td>I_3S_2</td>
<td>15</td>
<td>gr/m3</td>
</tr>
<tr>
<td>Reference harvest index (HI)</td>
<td>I_3S_2</td>
<td>71</td>
<td>%</td>
</tr>
<tr>
<td>Max. crop canopy (CCX)</td>
<td>I_3S_2</td>
<td>57</td>
<td>%</td>
</tr>
<tr>
<td>Water productivity (WP)</td>
<td>I_3S_3</td>
<td>15</td>
<td>gr/m3</td>
</tr>
<tr>
<td>Reference harvest index (HI)</td>
<td>I_3S_3</td>
<td>50</td>
<td>%</td>
</tr>
<tr>
<td>Max. crop canopy (CCX)</td>
<td>I_3S_3</td>
<td>52</td>
<td>%</td>
</tr>
</tbody>
</table>
جدول 7- مقایسه عملکرد دانه و بیوماس سویا اندامه گری شده و شبیه سازی شده.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Grain yield (ton/ha)</th>
<th>Biomass (ton/ha)</th>
<th>Grain yield (ton/ha)</th>
<th>Biomass (ton/ha)</th>
<th>Model predicted error For grain yield (%)</th>
<th>Model predicted error For biomass (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁S₁</td>
<td>6.01</td>
<td>7.87</td>
<td>6.26</td>
<td>8.26</td>
<td>4.16</td>
<td>4.96</td>
</tr>
<tr>
<td>I₁S₂</td>
<td>3.83</td>
<td>4.57</td>
<td>4.18</td>
<td>5.57</td>
<td>9.14</td>
<td>21.88</td>
</tr>
<tr>
<td>I₁S₃</td>
<td>3.25</td>
<td>3.71</td>
<td>3.31</td>
<td>4.88</td>
<td>1.85</td>
<td>31.54</td>
</tr>
<tr>
<td>I₁S₄</td>
<td>8.14</td>
<td>13.4</td>
<td>8.35</td>
<td>13.21</td>
<td>2.58</td>
<td>1.42</td>
</tr>
<tr>
<td>I₂S₁</td>
<td>6.82</td>
<td>11.15</td>
<td>7.56</td>
<td>11.94</td>
<td>10.85</td>
<td>7.09</td>
</tr>
<tr>
<td>I₂S₂</td>
<td>6.15</td>
<td>10.02</td>
<td>6.74</td>
<td>10.63</td>
<td>9.59</td>
<td>6.09</td>
</tr>
<tr>
<td>I₂S₃</td>
<td>6.07</td>
<td>7.13</td>
<td>6.18</td>
<td>8.4</td>
<td>1.81</td>
<td>17.81</td>
</tr>
<tr>
<td>I₂S₄</td>
<td>4.47</td>
<td>5.01</td>
<td>4.67</td>
<td>6.47</td>
<td>4.47</td>
<td>29.14</td>
</tr>
<tr>
<td>I₃S₁</td>
<td>2.03</td>
<td>2.63</td>
<td>2.53</td>
<td>3.56</td>
<td>24.63</td>
<td>35.36</td>
</tr>
</tbody>
</table>

جدول 8- ارزیابی کارایی مدل در شبیه سازی عملکرد بیوماس

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Observed Biomass (Ton/ha)</th>
<th>Simulated Biomass (Ton/ha)</th>
<th>RMSE</th>
<th>E</th>
<th>MAE</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁S₁</td>
<td>7.87</td>
<td>8.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₁S₂</td>
<td>4.57</td>
<td>5.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₁S₃</td>
<td>3.71</td>
<td>4.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₁S₄</td>
<td>13.4</td>
<td>13.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂S₁</td>
<td>11.15</td>
<td>11.94</td>
<td>0.95</td>
<td>0.92</td>
<td>0.87</td>
<td>0.9895</td>
</tr>
<tr>
<td>I₂S₂</td>
<td>10.02</td>
<td>10.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂S₃</td>
<td>7.13</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂S₄</td>
<td>5.01</td>
<td>6.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₃S₁</td>
<td>2.63</td>
<td>3.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
شکل 1- کالیبراسیون مدل برای عملکرد بیوماس در تمام تیمارها

جدول ۹- ارزیابی کارایی مدل در شبیه‌سازی عملکرد دانه

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Observed Grain yield (Ton/ha)</th>
<th>Simulated Grain yield (Ton/ha)</th>
<th>RMSE</th>
<th>E</th>
<th>MAE</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁S₁</td>
<td>6.01</td>
<td>6.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₁S₂</td>
<td>3.83</td>
<td>4.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₁S₃</td>
<td>3.25</td>
<td>3.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂S₁</td>
<td>8.14</td>
<td>8.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂S₂</td>
<td>6.82</td>
<td>7.56</td>
<td>0.4</td>
<td>0.95</td>
<td>0.33</td>
<td>0.9865</td>
</tr>
<tr>
<td>I₂S₃</td>
<td>6.15</td>
<td>6.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₃S₁</td>
<td>6.07</td>
<td>6.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₃S₂</td>
<td>4.47</td>
<td>4.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₃S₃</td>
<td>2.03</td>
<td>2.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2- Model calibration results for grain yield in all treatments

نتیجه‌گیری
در این پژوهش مدل AquaCrop برای گیاه سویا با شرایط استان واسنجی گردید. در شیب‌سازی مدل تیمار شاهد درای کمترین اختلاف با حالت واقعی نشان داد و نتایج حاصل از Shiny-S1 با شاهد بهتری نسبت به تنش شوری دقت در شیب‌سازی شاهد یافت. مدل در شیب‌سازی مقدار شاهد در عملکرد دانه و عملکرد بیوماس نیز بهتری نسبت به تنش شوری دقت در شیب‌سازی با حالت ویلیامز مقایسه گردد. در پژوهشهای سویا محصول استراتژی با سایر نیز در مدل سویا با استفاده شیب‌سازی با AquaCrop مناسب‌تر از با استفاده از Shiny-S1 و شاهد بود.

References

