شبیه سازی شوری آب زیرزمینی با تلفیق قابلیت‌های شبکه عصبی مصنوعی و سیستم اطلاعات جغرافیایی در سواحل جنوبی خزر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری منابع طبیعی_ آبخیزداری، دانشگاه ارومیه

2 دانشیار دانشکده منابع طبیعی دانشگاه گیلان- گروه مرتع و آبخیزداری.

چکیده

باتوجهبهشرایطکشورایرانبه لحاظ کمبودمنابعآبسطحی،استفادهازمنابعآبزیر­زمینیبرایتأمینآبمورد توجه قرار گرفتهاست. انجام آزمایش­های کیفی، زمان­بر و پرهزینه است. بنابراین، استفاده از مدل­ها برای شبیه­سازی کیفیت آب متداول شده است. در تحقیق حاضر شبکه عصبی­مصنوعی برای شبیه­سازی شوری آب زیرزمینی و سیستم اطلاعات جغرافیایی (GIS) به­عنوان پیش­پردازنده و پس­پردازنده در شبیه­سازی در سطح دشت مازندران استفاده شد. شوری آب زیرزمینی با استفاده از شبکه پرسپترون چند­لایه (MLP) و با در نظر گرفتن هدایت الکتریکی(EC) آب زیرزمینی و کمی نمودن عوامل مؤثر در شوری آب، شبیه­سازی گردید. سپس، آزمون یا اعتباریابی مدل و تأیید کارایی مدل انجام پذیرفت. در محیط سیستم اطلاعات جغرافیایی، سطح دشت مطالعاتی به سلول­های یک در یک کیلومتری به فرمت رستری جدا شد و از تلفیق لایه­های ورودی مدل، لایه زمین مرجع عوامل شوری آب تهیه گردید. مقادیر کمی برای هر سلول به­همراه مختصات به محیط شبکه عصبی وارد گشت و  شبیه­سازی شوری آب زیرزمینی برای مکان­های فاقد آمار با شبکه بهینه اعتباریابی شده، انحام پذیرفت. سپس، نتایج با توجه به دست­یابی مقادیر ضریب تعیین GIS وارد و نقشه یا لایه رستری شوری آب زیرزمینی براساس نتایج شبیه­سازی شبکه عصبی تهیه شد. نتایج با توجه به دست­یابی مقادیر ضریب تعیین 78/0=2 Rو معیار میانگین مربعات خطای RMSE برابر با 122/0 در مرحله آزمون با ارزیابی کارایی شبکه عصبی و همچنین تحلیل هم­پوشانی مقادیر برآوردی و مقادیر مشاهداتی در محیط GIS، دلالت بر دقت و کارایی تلفیق شبکه عصبی و GIS در مطالعات داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling of Groundwater Salinity Using Artificial Neural Network (ANN) and Geographic Information System (GIS) on the Caspian Southern Coasts

نویسندگان [English]

  • Marhamat Sebghati 1
  • Vahid Sebghati 2
1 PhD Student of Watershed Management, Faculty of Natural Resources, University of Urmia
2 Associate Professor, Department of Range and Watershed Management, Faculty of Natural Resources, University of Guilan.
چکیده [English]

Introduction
 Groundwater is one of the most important water resources on earth, and water salinity studies are very important for the protection and planning of water resources, especially in arid and semiarid areas such as Iran. Groundwater currently accounts for more than 90 percent of Iran’s total drinking water consumption. This water resource is less susceptible to bacterial pollution and evaporation than surface water, and hence it is more important than surface water.
 
Materials and Methods
     An ANN includes three layers, namely, input layer, hidden layer and output layer. A network can have more than one hidden layer. In this study, multi-layer perceptron (MLP) was applied to simulate groundwater salinity. MLP is generated through adding one or more hidden layers to one-layer perceptron and can solve complex problems. The feed-forward neural network was the first and simplest type of artificial neural network devised. In a feed-forward network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes and to the output nodes. In the first stage of simulation, all data were normalized and divided into three classes: training data (65% of all data), test data (25% of all data) and cross validation data (10 % of all data). The different transfer functions such as hyperbolic tangent and sigmoid transfer functions were evaluated. Based on the results of this study (through trial-and-error method), the hyperbolic tangent transfer function was the best transfer function. Artificial neural network (ANN) is an efficient tool in hydrologic studies. In this study, an integration of ANN and GIS (the geographic information system) was applied to simulate groundwater salinity. ANN and GIS were, indeed, used for simulation purposes and as a pre-processing and post-processing system of the applied data, respectively. Thus, GIS was applied as an efficient tool to provide the base maps and to estimate the model’s quantitative parameters. Different digital/base maps were provided in GIS environment including DEM, transmissivity of aquifer formations, water table depth, precipitation values and distance from Caspian Sea and water resources using topographic maps of the region and EC values using water salinity secondary data. Different piezometric wells were selected to simulate groundwater salinity (EC). In GIS pre-processing stage, raster layers of the input factors were provided and combined using overlay analysis with a pixel size 1×1 km. Therefore, the surface of study plain was separated to more than 10000 geo-referenced pixels (1×1km). These pixels had values of model inputs or groundwater salinity factors (transmissivity of aquifer formation, water table depth and the distance from water resource). We inserted the site coordinate for every pixel automatically in the GIS medium. Pixels data (networks inputs and coordinate) were exported from GIS and then imported to NeuroSolutions software. In ANN medium, groundwater salinity (EC) was simulated using the validated optimum network for all of the 10000 pixels (the whole study plain).

کلیدواژه‌ها [English]

  • EC
  • Groundwater Salinity
  • Mazandaran Plain
  • MLP

1-    Anctil, F. and Rat, A., 2005. Evaluation of neural network streamflow forecasting on 47 watersheds. Journal of Hydrologic Engineering10(1), pp.85-88.

 

2-    Chen, J. and Adams, B.J., 2006. Integration of artificial neural networks with conceptual models in rainfall-runoff modeling. Journal of Hydrology318(1), pp.232-249.

 

3-    Daliakopoulos, I.N., Coulibaly, P. and Tsanis, I.K., 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology309(1), pp.229-240.

 

4-    Ducci, D. and Sellerino, M., 2013. Vulnerability mapping of groundwater contamination based on 3D lithostratigraphical models of porous aquifers. Science of the Total Environment447, pp.315-322.

 

5-    Gangopadhyay, S., Gautam, T.R. and Gupta, A.D., 1999. Subsurface characterization using artificial neural network and GIS. Journal of Computing in Civil Engineering13(3), pp.153-161.

 

6-    Gholami, V. and Darvari, Z. 2013., Comparison of Performance of Multiple Regression and Artificial Neural Network (ANN) in Simulation of Groundwater Salinity on Mazandaran Provinces. Journal of Water Research in Agriculture. 26(1): 356-355. (In Persian).

 

7-    Gholami, V., Yousefi, Z. and Rostami, H.Z., 2010. Modeling of ground water salinity on the Caspian southern coasts. Water Resources Management24(7), pp.1415-1424.

 

8-    Ghosh, N.G. and Sharma, K.D. 2006. Groundwater Modeling and Management, Capital Publishing Company.Inter-basin of Odisha, India, Journal of Hydrology 495:38–51.

 

9-    Jang, C.S. and Chen, S.K., 2015. Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones. Journal of Hydrology523, pp.441-451.

 

10- Krishna, B., Satyaji Rao, Y.R. and Vijaya, T., 2008. Modelling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrological Processes22(8), pp.1180-1188.

 

11- Lallahem, S., Mania, J., Hani, A. and Najjar, Y., 2005. On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology307(1), pp. 92-111.

 

12- Langford, R.P., Rose, J.M. and White, D.E., 2009. Groundwater salinity as a control on development of eolian landscape: An example from the White Sands of New Mexico. Geomorphology105(1), pp.39-49.

 

13- Li, X., Shu, L., Liu, L., Yin, D. and Wen, J., 2012. Sensitivity analysis of groundwater level in Jinci Spring Basin (China) based on artificial neural network modeling. Hydrogeology Journal20(4), pp.727-738.

 

14-  Mahdavi, M. 1999. Applied Hydrology, Tehran University Press. 324, pp. (In Persian).

 

15- Mohanty, S., Jha, M.K., Kumar, A. and Panda, D.K., 2013. Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi–Surua Inter-basin of Odisha, India. Journal of Hydrology495, pp.38-51.

 

16- Mondal, N.C., Singh, V.P., Singh, V.S. and Saxena, V.K., 2010. Determining the interaction between groundwater and saline water through groundwater major ions chemistry. Journal of Hydrology388(1), pp.100-111.

 

17- Rajurkar, M.P., Kothyari, U.C. and Chaube, U.C., 2004. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology285(1), pp.96-113.

 

18- Samani, N., Gohari-Moghadam, M. and Safavi, A.A., 2007. A simple neural network model for the determination of aquifer parameters. Journal of Hydrology340(1), pp.1-11.

 

19-  Shah, T., Roy, A.D., Qureshi, A.S. and Wang, J., 2003, May. Sustaining Asia’s groundwater boom: an overview of issues and evidence. In Natural Resources Forum (Vol. 27, No. 2, pp. 130-141). Blackwell Publishing Ltd.

 

20- Singh, C.K., Shashtri, S., Mukherjee, S., Kumari, R., Avatar, R., Singh, A. and Singh, R.P., 2011. Application of GWQI to assess effect of land use change on groundwater quality in lower Shiwaliks of Punjab: remote sensing and GIS based approach. Water Resources Management25(7), pp.1881-1898.

 

21- Stigter, T.Y., Ribeiro, L. and Dill, A.C., 2006. Application of a groundwater quality index as an assessment and communication tool in agro-environmental policies–Two Portuguese case studies. Journal of Hydrology327(3), pp.578-591.

 

22- Tokar, A.S. and Markus, M., 2000. Precipitation-runoff modeling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering5(2), pp.156-161.