بررسی عملکرد مدل شبکه عصبی موجک در تخمین دبی روزانه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی عمران، دانشگاه آزاد خرم آباد.

2 دانشجوی دکترای سازه های آبی، دانشگاه لرستان

چکیده

سیل یکی از بلایای طبیعی مهمی است که همه‌ ساله باعث ایجاد خسارت‌های مالی و جانی فراوانی به جوامع مختلف می‌گردد. به همین دلیل محققین سعی نموده‌اند که تغییرات کمی این پدیده را حتی‌المقدور به‌ طور دقیق مورد بررسی قرار دهند. در این پژوهش برای تخمین دبی روزانه ایستگاه بادآور نورآباد واقع در استان لرستان از مدل شبکه عصبی موجک استفاده شد و نتایج آن با سایر روش‌های هوشمند ازجمله  شبکه عصبی مصنوعی مقایسه گردید. برای این منظور از پارامتر حداکثر بارش 24 ساعته یک تا چهار روز قبل در مقیاس زمانی روزانه در طی دوره آماری (1391-1381) به‌عنوان ورودی و دبی حداکثر روزانه به‌عنوان پارامتر خروجی مدل‌ها انتخاب گردید. معیارهای ضریب تعیین، ریشه میانگین مربعات خطا و میانگین قدر مطلق خطا برای ارزیابی و عملکرد مدل‌ها مورداستفاده قرار گرفت. نتایج نشان داد هر دو مدل قابلیت خوبی در تخمین دبی روزانه دارند، مقایسه نتایج نشان داد مدل شبکه عصبی موجک عملکرد بهتری نسبت به مدل شبکه عصبی مصنوعی در مدل‌سازی دارد، به‌گونه‌ای که مدل شبکه عصبی موجک با بالاترین ضریب تعیین (920/0)، جذر میانگین مربعات خطا (005/0) و نیز میانگین قدر مطلق خطا (003/0) در مرحله صحت سنجی در اولویت قرار گرفت. درمجموع نتایج نشان داد استفاده از مدل شبکه عصبی موجک می‌تواند درزمینه تخمین دبی روزانه مفید باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluvating the Performance of Wavelet Neural Network Models in Estimation of Daily Discharge

نویسندگان [English]

  • Hamidreza Babaali 1
  • Reza Dehghani 2
1 Assistant Professor of Civil Engineering, Islamic Azad University, Khorramabad.
2 Ph.D. Student of Water Structure, Faculty of Agric., University of Lorestan, Khorramabad, Iran.(
چکیده [English]

River flow prediction is one of the most important key issues in the management and planning of water resources, in particular the adoption of proper decisions in the event of floods and the occurrence of droughts. In order to predict the flow rate of rivers, various approaches have been introduced in hydrology, in which intelligent models are the most important ones. The application of artificial neural networks (ANNs) to various aspects of hydrological modeling has undergone much investigation in recent years. This interest has been motivated by the complex nature of hydrological systems and the ability of ANNs to model non-linear relationships. ANNs are essentially semi-parametric regression estimators and well suited for hydrological modeling, as they can approximate virtually any (measurable) function up to an arbitrary degree of accuracy (Hornik et al., 1989). A significant advantage of the ANN approach in system modeling is that one need not have a well-defined process for algorithmically converting an input to an output.

کلیدواژه‌ها [English]

  • Estimation
  • Flood
  • Artificial neural network
  • Nourabad

1-    Abasi, S.M., Orimi, M., Hosseini, A., Sharifi, M.B., 2011. Investigating the capability of cprecip parameter for estimating snow effect on daily river flow prediction by neural network and fuzzy neural network. Journal of Irrigation Sciences and  Engineering, 35(1), pp.83-92 (In Persian).

 

2-    Aichouri,  I.,  Hani, A.,  Bougherira, N.,  Djabri,  L., Chaffai, H., Lallahem, S.,2015.  River Flow Model Using Artificial Neural Networks. Energy Procedia,74(2), pp.1007-1014.

 

3-    Elsafi, H.,  2014. Artificial Neural Networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alexandria Engineering Journal, 53(2), pp. 655-662.

 

4-    Ghorbani, M.A., Dehghani, R., 2016. Application of baysian neural networks, support vector machine and gene expression programming  in rainfall-monthly runoff analysis (case study: kakarza river). Journal of Irrigation Sciences and Engineering, 39(2), pp.125-138 (In Persian).

 

5-    Kasiviswanathana, K.S.,  Jianxun, H.,  Sudheerb, K.P., Joo-Hwa, T., 2016.  Potential application of wavelet neural network ensemble to forecast streamflow for flood management. Journal of Hydrology, 536(4), pp. 161-173.

 

6-    Kaveh, A., Iranmanesh, A., 2004. Artificial neural network in optimizing structures. Third Book. Publication of Building and Housing Research Center. (In Persian).

 

7-    Kisi, O., Karahan, M., and Sen, Z., 2006. River suspended sediment modeling using fuzzy logic approach. Hydrological  Process. 20(2), pp. 4351-4362.

 

8-    Khosravi, M., Salajegheh, A., Mahdavi, M., Saroy, M., 2011. Flood prediction using artificial neural network and nonlinear multivariate regression (case study: taleghan). Pasture and Watershed Journal, 65(3), pp.341-349 (In Persian).

 

9-    Krishna,  B., Satyaji Rao, Y.R., Nayak, P.C., 2011. Time Series Modeling of River Flow Using Wavelet Neural Networks. Journal of Water Resource and Protection, 3(3), pp. 350-59.

 

10- Marofi, S., Amirmoradi, K., Parsafar, N., 2011. Daily flow prediction using artificial neural network and wavelet neural network (case study: barandozchay river), Journal of Water and Soil Science, 33(3), pp.93-103 (In Persian).

 

11- Najafi, A., Safari, A., Ghanavati, A., Karam, A., 2014. Simulation and analysis of maximum instantaneous discharges using artificial neural network (case study: hydrometric stations, Sulaghan, Golak, and Maghdebik stations in Tehran metropolis). Journal of Quantitative Geomorphology Research, 4(1), pp. 90-103 (In Persian).

 

12- Nagy, H., Watanabe, K., and Hirano, M., 2002. Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering. 128(3),pp. 558-559.

 

13- Negareh, H., Moghadam, M., Armesh, M., 2012. Application of artificial neural network in simulation and prediction of flood in sarbaz watershed. Geography and Development, 11(31), pp. 15-28 (In Persian).

 

14- Nourani, V.,  Alami,  M.T., Aminfar, M.H., 2009. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Engineering Applications of Artificial Intelligence, 22(3), pp. 466–472.

 

15- Nourani, V.,  Kisi, Ö., Komasi, M., 2011. Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. Journal of Hydrology, 402(3), pp. 41–59.

 

16- Okkan, U., 2012. Wavelet neural network model for reservoir inflow prediction . Journal of Scientia Iranica.December, 19(1), pp.1445–1455.

 

17- Panahi, A., Alikhani, B., 2012. Daily flare flow prediction using artificial neural network model and multivariate regression (case study: madarsow basin of golestan province). Geography Journal, 11(38), pp.113-132 (In Persian).

 

18- Rahnama,  M.B., Noury, M., 2008. Developing of Halil River Rainfall-Runoff Model, Using Conjunction of Wavelet Transform and Artifical Neural Networks . Research Journal of Environmental Sciences, 2(5), pp. 385-392.

 

19- Rostami, M., Fakherifard, A., Ghorbani, M.A., Darbandi, S., Dinpajoh, Y., 2011. River flow forecasting using wavelet analysis. Journal of  Irrigation Science and Engineering,35(2), pp.73-81 (In Persian).

 

20- Shin,  S.,  Kyung,  D.,  Lee, S.,  Taik & Kim,  J., Hyun, J.,  2005. An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(4), pp.127-135.

 

21- Tokar ,  A., Johnson, P., 1999.  Rainfall-Runoff Modeling Using Artificial Neural Networks. Journal of Hydrologic Engineering, 4(2), pp. 232-239.

 

22- Vapnik, V.N., 1988.  Statistical Learning Theory. John Wiley, New York.

 

23- Wang, D.,  Safavi, A.A., Romagnoli, J.A., 2000.  Wavelet-based adaptive robust M-estimator for non-linear system identification. AIChE Journal, 46(4), pp. 1607-1615.

 

24- Zhu,  Y.M., Lu,  X.X., Zhou, Y., 2007. Suspended sediment flux modeling with artificial neural network: An example of the longchuanjian river in the upper yangtze catchment. Geomorphology, 84(1), pp. 111-125.