Effect of Water Head and Irrigation Interval on Cumulative and Lateral Infiltration in Furrow Irrigation

B. Dialameh¹, H. Ebrahimian²*, M. Parsinejad³ and A. Mokhtari⁴

1- MSc, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
2* - Corresponding Author, Associate Professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran (ebrahimian@ut.ac.ir).
3- Associate Professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
4- MSc, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Received: 4 December 2016 Revised: 17 December 2017 Accepted: 20 December 2017

Keywords: Double-ring, Short block-end furrow, Initial conditions, Boundary conditions, Relative lateral infiltration. DOI: 10.22055/jise.2017.20123.1440.

Introduction

Infiltration is considered as one of the most important soil parameters in the design and evaluation of furrow irrigation systems. Water is infiltrated through the wetted perimeter when it reaches a given point in the furrow until it recedes. The depth of infiltrated water at a given point, therefore, is a function of opportunity time, wetted perimeter, and soil intake characteristics (Oyonarte et al., 2002). Thus, in-depth knowledge of how the initial (e.g. initial water content) and boundary conditions (such as water head and wetted perimeter) of a furrow can act on the infiltration process is essential. Previous studies show that cumulative infiltration in furrow irrigation is highly affected by the water head and initial water content. In furrow irrigation, water infiltration into the soil is two-dimensional, both vertically and laterally (Bautista et al. 2014). Gravity forces are dominant in vertical infiltration, while suction forces dominate horizontal/lateral infiltration. Suction forces largely depend on soil matric potential, which is a function of the soil texture and structure, and play an important role in soil moisture retention, sorptivity, essential for plant growth, and lateral infiltration. Knowledge of lateral infiltration and edge effect is essential for designing furrow irrigation systems because many researchers have found that more than 60% of total infiltrated water is through the side walls of furrows.

Several studies have been carried out to determine how initial and boundary conditions may affect the cumulative and lateral infiltration in furrow irrigation, but the combined effect of water head and initial water content on infiltration process is not investigated yet. Therefore, the main objective of this study is to investigate the combined effect of various initial (i.e., irrigation interval or initial water content) and boundary (i.e., water level or the wetted perimeter) conditions on the cumulative and lateral infiltration.
Methodology

Field experiments were conducted at the experimental station of the College of Agriculture and Natural Resources of University of Tehran, Karaj. The furrows were trapezoidal and the furrow length, spacing, and bottom width were 1.5, 0.75, 0.15 m, respectively. Three short block-ended furrows were used to conduct infiltration tests. Side furrows were applied as buffer furrows to preserve the edge effects. In order to investigate the effect of initial water content and wetted perimeter on the infiltration process, two different irrigation intervals and two different water heads were considered, as follows: (i) 5- and 10-cm water heads and (ii) 4 and 9 days irrigation intervals, to reproduce two different initial water contents at the soil surface layer. The water head was kept constant during the tests, by initially restoring it every 30 s and subsequently at 10 min intervals. The volume of water added to keep the water head constant was considered to amount to the total cumulative infiltration. The wetted perimeters corresponding to the water heads of 5 and 10 cm were determined to be 38 and 62 cm, respectively. Finally, double ring tests were conducted with similar irrigation intervals and water heads to differentiate between lateral and vertical infiltration. Vertical infiltration was then taken off from the total infiltrated water to estimate the lateral infiltration.

Results and Discussion

The maximum cumulative infiltration was measured with a higher water head (i.e. 10 cm) and extended irrigation interval (i.e. 9 days). In all cases, cumulative infiltration in the first irrigation was higher than other irrigation events, with the third irrigation having a minimum amount. The cumulative infiltration decreased up to 46 and 34% between the second and first irrigations and between the third and second irrigations, respectively. In the first irrigation, infiltration is increased for an increased water head from 5 to 10 cm. This increase was higher for a lower initial water content (longer irrigation interval). Therefore, by increasing the water head from 5 to 10 cm, average cumulative infiltration is increased up to 92 and 102%, respectively. In the second irrigation, by increasing the water head from 5 to 10 cm, for both irrigation intervals, cumulative infiltration increased up to 58 and 68%, respectively. Also, in the third irrigation, average cumulative infiltration in CFI increased up to 77 and 54%. In all three irrigations and for both water heads, infiltrated water depth was increased for a decreased initial soil water content owing to increased soil matric potential. In the first irrigation, for both 5 and 10 cm water heads, by increasing the irrigation intervals from 4 to 9 days, cumulative infiltration increased up to 37 and 30%. The effect of changes in initial water content on the infiltration process was less in the second irrigation. Cumulative infiltration increased for decreased initial water content up to 14% in the 5 cm water head and up to 21% in the 10 cm water head. Infiltration increase due to increased irrigation interval in the third irrigation was greater than for the first and second irrigations. Decreased initial water content caused 62 and 41% increase for water heads of 5 and 10 cm, respectively.

The highest lateral infiltration was observed for the higher water head (10 cm) and extended irrigation interval (9 days). This findings are in agreement with the results reported by Valiantzas et al. (2009) and Furman et al. (2006) Similar to cumulative infiltration, maximum and minimum lateral infiltrations were observed in the first and third irrigations, respectively. Up to 51% difference between lateral infiltration in the first and second irrigations and up to 32% difference between the second and third irrigations were observed. Lateral infiltration was increased by raising the water head from 5 to 10 cm. This increase was higher for a lower initial water content. By increasing the water head from 5 to 10 cm, cumulative lateral infiltration increased by about 5 times in the first irrigation. In the second irrigation event, cumulative lateral infiltration increased by up to 4 and 5 times, when increasing the water head from 5 to 10 cm in 4 and 9 days irrigation intervals, respectively. Cumulative lateral infiltration in the third irrigation was also increased by up to 3.5 and 4.5 times, when raising the water head from 5 to 10 cm. Cumulative lateral infiltration increased by
extending the irrigation interval for both water heads because of higher matric suctions. Cumulative lateral infiltration increased up to 62 and 52% by extending the irrigation interval from 4 to 9 days, respectively. For both 5 and 10 cm water heads, by decreasing the initial water content lateral infiltration increased up to 14% in second irrigation event. Decreasing the initial water content caused 45 and 96% increase in lateral infiltration for the third irrigation.

Conclusions
The results of this study showed that for a higher water head and longer irrigation intervals, the total and lateral infiltration increased. The results also indicated that irrigation management leading to apply a higher water head or longer irrigation intervals (or lower initial water content) means less time is needed to infiltrate a given amount of water, which leads to a decreased deep percolation and evaporation losses. Improved lateral infiltration can, in turn, lead to higher water and fertilizer application efficiency. Precise and sufficient knowledge of initial and boundary conditions for prediction of the infiltration process is necessary to manage the inflow rate and irrigation intervals properly. Otherwise, it may lead to improper and insufficient irrigation.

Acknowledgement
This research was conducted in the Experimental Farm of College of Agriculture and Natural Resources of University of Tehran. Hence, we appreciate their time and efforts.

References

تأثیر بارآبی و دور آبیاری بر نفوذ تجمیعی و نفوذ جانبی در آبیاری جویچه‌ای

باکیف دیاله، حامد ابراهیمی، مسعود پارسی‌نژاد و علی‌میری

1- دانش‌آموخته کارشناسی‌ارشد، گروه مهندسی آبیاری و آب‌آوری، دانشکده مهندسی و فنی کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.
2- تیم نویسندگان، دانش‌آموخته مهندسی آبیاری و آب‌آوری، دانشکده مهندسی و فنی کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.
3- دانش‌آموخته کارشناسی‌ارشد، گروه مهندسی آبیاری و آب‌آوری، دانشکده مهندسی و فنی کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.
4- دانش آموخته کارشناسی‌ارشد، گروه مهندسی آبیاری و آب‌آوری، دانشکده مهندسی و فنی کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

چکیده

افزاری به‌نام جویچه‌ای، مسئولیت شناخت کافی از تأثیر شرایط اولیه و موزیفیت بر فرآیند نفوذ و همچنین نفوذ جانبي در جویچه‌ها است. این پژوهش به‌دست آمده به‌شکل اتصال رطوبت اولیه و بارآبی متقابل بر نفوذ تجمیعی و جانبی در آبیاری جویچه‌ای انجام شد. به‌وسیله تحقیقات نفوذ تجمیعی با توجه به فاکتور‌های مختلف در جویچه و اتصالات معقود در بارآبی اولیه (باید برای این پژوهش بررسی شود) انجام شد. دستکاری‌های زمانی و توانایی تخلیه و توزیع از طریق اتصالات معقود در بارآبی اولیه به دنبال افزایش نفوذ تجمیعی و رطوبت اولیه متفاوت بر فرآیند نفوذ تجمیعی باعث می‌شود، به همین دلیل، در این پژوهش به‌وسیله تحقیقات گروهی با توجه به فاکتور‌های مختلف در جویچه و اتصالات معقود در بارآبی اولیه (باید برای این پژوهش بررسی شود) انجام شد.

مقدمه

نفوذ یکی از مهم‌ترین پردازش‌های در طراحی و ارایه روش‌های آبیاری سنجش می‌باشد (Karmeli et al., 1987; Walker and Skogerboe, 1987; Elliot and Walker, 1982; Zerihun et al., 1996; Oyonarte et al., 2002). در این نظریه، نفوذ منحنی نفوذ تجمیعی متقابل بر فرآیند نفوذ تجمیعی باعث می‌شود. به همین دلیل، در این پژوهش به‌وسیله تحقیقات گروهی با توجه به فاکتور‌های مختلف در جویچه و اتصالات معقود در بارآبی اولیه (باید برای این پژوهش بررسی شود) انجام شد.

کلیدواژه‌ها: اتصالات معقود، جویچه‌ها، گروهی، نفوذ، رطوبت اولیه، شرایط اولیه.
بار آبی و سطح مقطع های نفوذ تجمعی در نظر گرفته شدند. فراهم آمدن رطوبت اولیه بر فرآیند نفوذ، دو بار آبی و دو رطوبت اولیه مختلف یافته، مقاطع عرضی های انتها بسته کوتاه انجام شد (مطابق با Skogerbue و Walker (1987) و Skogerbue) و جویچه‌ها و دستورالعمل Hamilton et al. (2014) (4) در این مطالعه با رویکرد اولیه لوله می‌گردد. به نظر می‌رسد که این مسئله مهم‌ترین ریزه در مزرعه‌ها و با توجه به اهمیت این مسئله، هر چه ریزه حیاتی برای آبیاری به طور کمتر باقی می‌ماند.

جدول 1 - مشخصات فیزیکی خاک مزرعه

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Soil Texture</th>
<th>Percentage of Soil Components</th>
<th>Bulk Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 0.2</td>
<td>Clay Loam</td>
<td>Clay: 28 Silt: 43 Sand: 29</td>
<td>1.31</td>
</tr>
<tr>
<td>0.2 - 0.4</td>
<td>Clay Loam</td>
<td>Clay: 33 Silt: 40 Sand: 21</td>
<td>1.26</td>
</tr>
<tr>
<td>0.4 - 0.6</td>
<td>Clay Loam</td>
<td>Clay: 33 Silt: 40 Sand: 21</td>
<td>1.23</td>
</tr>
</tbody>
</table>
تأثیر بار آب بر نفوذ تجمعی

Afzali (2014) با افزایش بار آب در خاک، افزایش نفوذ تجمعی داشتند. این نتایج با نتایج أبريل و Vogel (2014) همخوانی دارد (Humphans, 1992). در حالی که در تحقیق افشاری و شمس القاسمی (2003) با افزایش بار آب به دو برابر، نفوذ تجمعی در حالت بار آب متوسط و بار آب بالا افزایش یافت. در این مطالعه، افزایش بار آب به دو برابر، نفوذ تجمعی در حالت بار آب متوسط و بار آب بالا افزایش یافت. در این مطالعه، افزایش بار آب به دو برابر، نفوذ تجمعی در حالت بار آب متوسط و بار آب بالا افزایش یافت. در این مطالعه، افزایش بار آب به دو برابر، نفوذ تجمعی در حالت بار آب متوسط و بار آب بالا افزایش یافت. در این مطالعه، افزایش بار آب به دو برابر، نفوذ تجمعی در حالت بار آب متوسط و بار آب بالا افزایش یافت.
یک تحقیق بررسی کرد که در دوره‌های آبیاری چهار و هر روز، عمق آب تفویضی به ترتیب ۷۷ و ۵۴ درصد افزایش یافت.

تأثیر رطوبت اولیه بر تفویض تجمعی کل
در هر سه واقعه آبیاری، عمق آب تفویضی‌های آبیاری با کاهش رطوبت اولیه کاهش یافت، دریافت این مسئله، افزایش کمک‌های مالی به کاهش رطوبت یک دوره آبیاری در میان آب‌های کاهش رطوبت اولیه. در نوزدهمین روز و به‌دنبال آن کاهش رطوبت اولیه، به ترتیب ۲۷ و ۳۰ درصد افزایش نفوذ مشاهده شد. تأثیر کاهش رطوبت اولیه بر آبیاری در روزهای پنج و یا ده سانتی‌متری، با افزایش دور آبیاری از چهار به نه روز، به‌دلیل کاهش رطوبت اولیه به ترتیب ۳۷ و ۳۰ درصد افزایش نفوذ مشاهده گردید.

تأثیر کاهش رطوبت اولیه بر افزایش نفوذ در آبیاری دوم کمتر از آبیاری اول بود. به این ترتیب با کاهش رطوبت اولیه در بار آبیاری پانزده سانتی‌متری، ۱۴ و در بار آبیاری ده سانتی‌متری، ۲۱ درصد افزایش نفوذ مشاهده شد. درباره‌ی آبیاری سوم، درصد افزایش نفوذ بر اثر افزایش دور آبیاری نسبت به آبیاری اول و دوم کاهش رطوبت اولیه منجر به افزایش ۶۲ و ۴۱ درصدی نفوذ در آبیاری سوم، به ترتیب در بارهای آبیاری پنی و ده سانتی‌متری، مشاهده گردید.

شکل ۱ – منحنی تفویض کلی در آبیاری چهار روزه با تفاوت در رطوبت اولیه

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Irrigation</td>
<td>First Irrigation</td>
<td>First Irrigation</td>
<td>First Irrigation</td>
</tr>
<tr>
<td>Second Irrigation</td>
<td>Second Irrigation</td>
<td>Second Irrigation</td>
<td>Second Irrigation</td>
</tr>
<tr>
<td>Third Irrigation</td>
<td>Third Irrigation</td>
<td>Third Irrigation</td>
<td>Third Irrigation</td>
</tr>
<tr>
<td>Cumulative Infiltration (mm)</td>
<td>Cumulative Infiltration (mm)</td>
<td>Cumulative Infiltration (mm)</td>
<td>Cumulative Infiltration (mm)</td>
</tr>
<tr>
<td>Time (minute)</td>
<td>Time (minute)</td>
<td>Time (minute)</td>
<td>Time (minute)</td>
</tr>
</tbody>
</table>
دیالمه و همکاران: تأثیر بار آبی و دور آبیاری بر نفوذ تجمیعی.

DOI: 10.22055/jise.2017.20123.1440

شکل 2 – منحنی نفوذ تجمیعی در استوانه‌های مضاعف در شرایط اولیه و مرزی متفاوت آبیاری‌های اول، دوم و سوم

A) بار آبی پنج سانتی‌متر و دور آبیاری چهار روز، B) بار آبی ده سانتی‌متر و دور آبیاری چهار روز، C) بار آبی چهار سانتی‌متر و دور آبیاری نه روز، D) بار آبی چهار سانتی‌متر و دور آبیاری دو روز

به طور کلی، با افزایش بار آبی از پنج به ده سانتی‌متر، در هر دو حالت رطوبت اولیه، نفوذ عمودی افزایش یافت. نتایج حاصل با نتیجه‌گزاری شده توسط Valiantzas et al. (2009) و همچنین Furman et al. (2006) مطابقت داشت. همچنین به‌طور کلی، نفوذ تجمیعی در حالت با رطوبت اولیه کمتر، عمق و شدت نفوذ عمودی افزایش یافت که این نتیجه نیز با نتیجه‌گزاری شده توسط Philip (1957، 1969) همخوانی داشت. به‌طور کلی، نفوذ تجمیعی در استوانه‌های مضاعف با افزایش بار آبی و کاهش رطوبت پشتی، تأثیرگذار در کاهش پتانسیل ماتریکی به‌طور کلی مقدار نفوذ تأثیرگذار است. در نهایت از اینگونه مقادیر بی‌نفوذیه به‌صورت یک‌بعدی در استوانه‌های مضاعف و کل آب بی‌نفوذیه در جویچه‌ها، قدرت نفوذ جانی در جویچه‌جهانی تغییر نشده است. بررسی مقادیر نفوذ جانی در

![Cumulative Infiltration Curve in Double Rings](image)
مسأله باعث افزایش نفوذ آب در خاک می‌گردد. به همین دلیل، اختلاف بین مقدار نفوذ جانبی اول با ابیاری دوم، بین اختلاف بین نفوذ جانبی ابیاری دوم و سوم بود، مخصوصاً در رطوبت اولیه کمتر (دور آبیاری بیشتر). لالی بیان‌شده در رابطه با اختلاف مقدار نفوذ جانبی بین ابیاری‌های دوم و سوم نیز صادق است. در حالت‌های آزمایشی، بین نفوذ جانبی در ابیاری دوم نسبت به ابیاری اول ۵۱ درصد و بین اب نفوذی‌های ابیاری سوم نسبت به ابیاری دوم ۲۳ درصد کاهش مشاهده شد. در حالت بار رطوبت اولیه کمتر (دور ابیاری بیشتر). در هر دو بار ابیاری نیز، اختلاف بین مقدار نفوذ در ابیاری‌های دوم و سوم کمتر از اختلاف بین مقدار نفوذ در حالت‌های با رطوبت اولیه بیشتر (دور ابیاری کمتر) بود. زیرا هر چه رطوبت خاک کمتر باشد، مکش آب در خاک و در نتیجه قابلیت نفوذ آب در خاک بیشتر است. نمودارهای نفوذ جانبی در شکل (3) آمده است.

تأثیر بار آبی بر نفوذ جانبی

در ابیاری اول و در هر دو دور ابیاری چهار و نه روز، با افزایش بار آبی از پنج به ده سانتی‌متر، نفوذ جانبی در جویچه‌ها افزایش یافت. این افزایش در رطوبت اولیه بیشتر (دور ابیاری کمتر) بیشتر بود. به این صورت که با افزایش بار آبی از پنج به ده سانتی‌متر در دوره‌های ابیاری چهار و نه روز، نفوذ جانبی بترعی نمود. تا پنج و بیش از پنج بار افزایش پایه.

شکل ۳ - منحنی نفوذ جانبی در ابیاری جویچه‌ای در شرایط اولیه و مرزی متفاوت آبیاری‌های اول، دوم و سوم (A: ۵ سانتی‌متر و دو دور آبیاری چهار روز، B: ۱۰ سانتی‌متر و دو دور آبیاری چهار روز، C: ۵ سانتی‌متر و پنج روز، D: ۱۰ سانتی‌متر و پنج روز)
بیشتری بر افزایش
متر
رطوبت اولیه بیشتر بود. فارغ از در نظر گرفتن تأثیر رطوبت اولیه و به آبیاری دوم با بار آبی کمتر و
چنین حداقل سهم نفوذ جانبی از نفوذ کم، در آبیاری کاهش رطوبت اولیه (افزایش دور آبیاری)، سهم نفوذ
جانبی از نفوذ کل افزایش می‌یابد. با این تفاوت که
افزایش بار ایز از پنج به ده سانتی‌متر، تأثیر بیشتری بر افزایش
سمه نفوذ جانبی از نفوذ کل نسبت به افزایش دور آبیاری از جهار
به نه روز (کاهش رطوبت اولیه به‌صورت تقریبی از 31 به
درصد جسمی) گذشت. به‌طور کلی، بیشترین مسه نفوذ
جانبی از نفوذ کل مربوط به افزایش اول و سوم بود.
جدایا نفوذ جانبی از نفوذ کل 61 درصد بود که مربوط به
ایزی اول با بار ایز بیشتر و رطوبت اولیه کمتر بود. نتیجه حاصل
Bautista et al., (2002) Skonard با تایگ جارش، شده توسط
(2014)، می‌توان به سه میلی‌متری 60 درصدی نفوذ جانبی از نفوذ
کل در ایزی زیاد و سه میلی‌متری 30 درصدی در ایزی کم، در ایزی
جویچه‌ای مطلوق‌ندار. همچنین حداکثر سهم نفوذ جانبی از نفوذ
کل، 17 درصد بود که مربوط به ایزی دوم بار ایز کمتر و
بزرگ‌تر از نفوذ اولیه. با افزایش دور آبیاری از جهار به نه روز و
به‌دلیل آن کاهش رطوبت اولیه، نفوذ جانبی به
درصد افزایش کاهش رطوبت اولیه در ایزی اول بود. با افزایش
نفوذ جانبی مشاهده شد. تأثیر کاهش رطوبت اولیه بر افزایش نفوذ
در ایزی دوم کمتر از ایزی اول بود. باعث نتیجه که با کاهش
رطوبت اولیه در ایران ریز ایزی نه روز و نه سانتی‌متر، 31 درصد نفوذ
افزایش یافت. همچنین در ایزی سوم، کاهش رطوبت اولیه در
یزی اول و نه سانتی‌متر، نفوذ موج افزایش 24 و
درصدی نفوذ جانبی از نفوذ کل تحت شرایط اولیه و مزرعه متفاوت.
Table 2 – Proportion of lateral infiltration from total infiltration under various initial
and boundary conditions

<table>
<thead>
<tr>
<th>Initial and Boundary Conditions</th>
<th>Irrigation Event</th>
<th>Relative Lateral Infiltration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>19.47</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>17.26</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>18.04</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>53.33</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>53.9</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>49.4</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>24.37</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>23.4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>23.02</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>61.42</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>55.51</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>51.86</td>
</tr>
</tbody>
</table>
نتیجه‌گیری
هدف اصلی از پژوهش انجام شده، مطالعه میزان تجویز محلول در اثر آب افزایش و بهبود رطوبت اولیه و مرزی می‌باشد. تغییرات در بار آبیاری ده سانتی‌متر باعث شد که نفوذ تا ۴۳ درصد افزایش یابد. با افزایش بار آبیاری، تعداد های آبیاری زیادتر و بهبود رطوبت اولیه و مرزی و همچنین تا ۴۹ درصد افزایش یافته و با آبیاری آبیاری، رقابت شرایط اولیه افزایش یافته، سهم تجویز جابجایی افزایش یافته با توجه به افزایش محیط خشک شده و انرژی آب بر اثر آبیاری افزایش و بهبود رطوبت اولیه و مرزی می‌باشد.

تقدير و تذکر
این تحقیق در مزرعه پژوهشی یک‌کارگزار و میان‌طیبی‌نشانه هزار انجام شده است که بدن و وسیله تحقیر و قدردانی می‌گردد.

References

