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Abstract 

In this study, Site Groundwater Rating (SGR) in the Amirkabir tunnel has been estimated using 

Radial Basis Function Networks (RBFNs). SGR is the first rating method that by considering the 

parameters like joint frequency, joint aperture, schistosity, crashed zones, karstification, soil 

permeability coefficient, tunnel location in the water table or piezometric surface, and the amount 

and intensity of annual raining in the area, classifies the tunnel path from the risk of groundwater 

seepage point of view. In this article, using an RBFN, an estimation of SGR along the Amirkabir 

tunnel path was performed. Field data obtained from primary studies in the tunnel was used to train 

and test the prepared network. For the testing set, modeling results showed that SGR could be 

predicted with the mean error of 3.57% and 4.76% using radial basis network and exact radial basis 

network functions, respectively. A High correlation between the SGR of the tunnel path and the 

network answers, confirmed the prepared RBFN. 
 

Introduction 

One of the problems of tunnels is the 

penetration of groundwater by engineers and 

workers, which creates significant risks and 

incidents (Maleki et al., 2022). The presence 

of groundwater reduces the stability of tunnel 

walls and roofs and, in some cases, causes 

severe and sudden flooding, leading to heavy 

losses and damage. It is impossible to 

determine all the efficient factors of water 

flow in a tunnel. Therefore, it seems 

complicated to accurately predict the rate of 

leakage. The analytical methods and 

equations have many applications in the 

calculation of water penetration rates in 

tunnels due to their simplification and the use 

of practical theory (Farhadian et al., 2021). In 

recent decades, scientists have tried to 

provide increasingly sophisticated analytical 

solutions to estimate the groundwater 

penetration into tunnels. (Agatonovic-

Kustrin and Beresford 2000, Farhadian et al., 

2016a). Among the most important 

researches on calculating water seepage into 

the tunnel, Goodman et al. (1965), Freeze and 

cherry (1979), Lei (1999), Karlsrud (2001), 

Lombardi (2002), and EL Tani (1999 & 

2003), Perrochet and Dematteis (2007), Park 

et al. 2008, Gattinoni et al. 2008, Moon and 

Fernandez (2009), Farhadian and Katibeh 

(2017) and Maleki (2018) can be mentioned. 

The evaluation of the tunnel sections due to 

the risk of groundwater inflow was 

discussed. The analytical formulas are 

derived to simplify the geostructural 

configuration, and the input data are kept as 
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simple as possible. An analytical solution is 

used to predict the groundwater flow into the 

tunnel based on simplified assumptions 

(Farhadian et al., 2016b): 

1. 2-D flow and circular tunnel cross-

section, 

2. Homogenous and isotropic permeability, 

3. The tunnel section is located under water 

table. 

Groundwater inflow to the tunnel is one of 

the perilous conditions in the time of 

excavating underground tunnels, One of the 

dangerous conditions when excavating 

underground tunnels. The problem of 

groundwater penetration is very difficult to 

control. This is due to the fact that the 

prediction of low flows results in high costs 

and unsafe operating conditions. The high 

flow encourages contractors to ignore it.  

There are basically two problems with flow 

prediction. The first is that no satisfactory 

solutions have been proposed so far in the 

literature on the groundwater flow into hard 

rock tunnels. (Farhadian and Nikvar Hassani, 

2019). The second problem is the wide 

variation of permeability along the tunnel 

section, sometimes up to six orders of 

magnitude. It is the responsibility of the 

tunnel designer to estimate the amount and 

location of groundwater entering the tunnel 

(Nikvar Hassani et al., 2016, Palmstrom and 

Stille, 2007, Sievanen, 2001).  

An overall assessment of the groundwater 

inflow to the tunnel provides the basis for the 

designation of a drainage system. 

Groundwater intrusion affects both 

construction methods and plans. Therefore, 

minor errors in flow prediction can lead to 

long delays in comparing progress with 

excessive and unnecessary costs. In hard rock 

tunnels, it is the characteristics of the inflow 

that most of the inflow occurs in a few places; 

however, some of the inflow comes from 

many places. Therefore, most of the tunnel is 

dry. The total flow is obtained by adding the 

flow velocity along the length of the tunnel. 

This is a common phenomenon observed in 

hard rock tunnel projects and is the leading 

cause of many problems in estimating 

groundwater flow using standard 

hydrogeological solutions. (Moon and 

Fernandez, 2010, Butscher, 2012, Farhadian 

et al., 2016, Nikvar Hassani et al., 2018). 

Several factors influencing the infiltration 

of groundwater into groundwater have been 

identified: (Farhadian et al., 2017): 

 The size and dimension of an 

excavation/tunnel/water conductive zone, 

 Depth of the underground excavation 

below the groundwater table, 

 Groundwater recharge, 

 Hydraulic conductivity of the rock 

mass/water conductive zone (geological 

and structural conditions). 

Of the above parameters, the most 

important parameter in calculating the 

groundwater flowing in the tunnel is the 

permeability of the bedrock (before and after 

grouting) (Farhadian and Katibeh, 2015a, 

Brantberger et al., 1998). In addition, it has 

been statistically proven that the composition 

and thickness of the overburden play a 

decisive role in the water penetration rate. 

(Cesano, 1999, Cesano et al., 2000). 

However, Polla and Ritola (1989) found no 

correlation between excavation volume and 

water inflow rate. It should be noted, 

however, that Farhadian et al. (2016) argued 

that the volume of excavation (tunnel radius) 

plays an important role in tunneling 

groundwater into solid rock masses. In 

addition, an unpublished literature review of 

groundwater penetration in excavations 

Tolppanen, (1997) indicates that 

because the quantitative values cannot be 

compared directly due to different uses and 

methods of excavation, the researcher found 

a very weak correlation between 

the volume of excavation and inflow rate. In 

general, the existence of a weak correlation 

between the above parameters can be 

explained by the fact that in hard crystalline 

rock tunnels, most flows usually take place at 

relatively small spots or lines in the crashed 

zone and fractured area. (Moon and Jeong, 

2011, Farhadian and Katibeh, 2015b, Moeini 

et al., 2018). 

Recently, the use of artificial neural 

networks has greatly increased the 

hydrogeological debate, and many 

researchers predict various topics, such as 

groundwater levels, flow, and transport 

(Daliakopoulos et al., 2005; Lallahem et al., 

2005; Rajurkara et al., 2004; Morshed and 

Kaluarachchi, 1998; Imrie et al., 2000; 

Kompani-Zare and Zhan, 2006; Gunnink et 
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al., 2012). Mathematical attribute models (Li 

et al., 2013; Wang et al., 2012), analytic 

hierarchical processes Ren and Xu (2011), 

and fuzzy extension theory Li et al., (2015) 

are various probabilistic mathematical 

techniques which widely used to assess the 

risk of water inflow to tunnels and coal 

mines. In general, the evaluation results are 

at an acceptable level, but subjectivity exists 

in the weights and scales of the evaluation 

indicators.  

In addition, some computer intelligence 

techniques, such as artificial neural networks, 

support vector machines, and Gaussian 

processes, have been used to analyze 

landslides Grelle and Guadagno, (2013), 

deformation of surrounding rocks Feng et al 

(2004), and surface deposition. Suwansawat 

and Einstein, (2006); Ovidio et al., (2008), 

pipe failure rates Tabesh et al., (2009); 

Shirzad et al., (2014) and other geotechnical 

issues (Ocak and Seker, 2012). Several 

related studies have also used artificial neural 

networks and support vector machines to 

predict mine leaks, and water flows in tunnels 

Guo and Ma, (2010); Ren and Xu, (2011). In 

this study, RBFN has been used to predict 

SGR for the first time. 

 

Materials and Methods 
Site Groundwater Rating 

 Based on the preliminary studies of the 

tunnel sites, for the first time, Katibeh and 

Aalianvari (2009) provided the SGR method 

for dividing the tunnel path to different rates 

regarding the risk of groundwater seepage. In 

this rating system, from groundwater seepage 

point of view, the tunnel path is divided to 6 

No risk, Low risk, Moderate risk, Risky, 

High risk, and Critical classes by considering 

parameters like joints frequency and 

aperture, schistosity, crashed zones, 

karstification, soil permeability coefficient, 

tunnel location in the water table or 

piezometric surface, and annual raining.  

Based on this method, the total score of the 

site, SGR, is calculated from the following 

equation (1) (Katibeh and Aalianvari, 2009): 

 

SGR= [(S1+S2+S3+S4) +S5] S6S7                        (1) 

 

where, 

 𝑆1 is the score of frequency and aperture 

of joints which is obtained using the 

following equation (2): 

 

𝑆1 = 25 × (∑
𝜆𝑖𝑔𝑒𝑖

2

12𝜐

𝑛
𝑖=1 𝑎)                                 (2) 

 

which, λi is the joint frequency (1/m), g is 

the earth’s gravity  

(m sec-2), ei  is the mean hydraulic joint 

aperture (m), υ is the kinematic viscosity of 

water (m2 sec-1), and a is the unit factor (sec 

m-1) for conversion of S1 to dimensionless 

form. 

𝑆2 is the score of schistosity and ranged 

between 1 and 5 according to the degree of 

schistosity. 

𝑆3 is the score of the crashed zone and is 

calculated based on crashed zone width using 

Table (1). 

𝑆4 is the karstification score and is based 

on the intensity of karstification ranging from 

10 to 100. 𝑆5 is the soil permeability score. S5 

is calculated as follows: 

 

S5 = K×C 
(3) 

 

 

where, K is the soil permeability (m/day), 

and C is the unit factor (day/m) for 

conversion of S5 to dimensionless form.  𝑆6 

is the score of the water head above the 

tunnel. S6 is obtained using equation (4): 

𝑆6 =  
𝐻

𝐿𝑛 (𝐻 × 𝑑)
× 𝑑 (4) 

where, H is the water head above the 

tunnel and d is the unit factor (1/m) for 

conversion of S6 to dimensionless form.  

𝑆7 is the annual raining score. S7 can be 

obtained by means of equation 5 regarding 

annual raining. 

𝑆7 =  
𝑃𝑦

5000
  (5) 

 

where, Py is annual raining (mm).  

 

 Table 1- Equations for computation of S3 (Katibeh and Aalianvari, 2009) 

 

Type of rock Crashed zone width S3 

Clay base rocks CZW 2×Log (10CZW×b) 

Other rock types CZW 100×Log (10CZW×b) 
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In comparison with earthen sites, 

parameters like crashed zone, joint 

frequency, and karstification have more 

significance in earthen sites. By contrast, in 

earthen sites, permeability coefficient is more 

important, while in rocky media, this factor is 

determined by frequency and aperture of 

joints. Therefore, in rocky site 𝑆5  and in 

earthen site 𝑆1 to 𝑆4 are assumed to be zero. 

Moreover, if the tunnel is excavated in 

unsaturated media, S6 will be considered as 

unit. Also, in areas that are unsaturated, 

annual precipitation is a factor that is 

important when drilling tunnels. If the tunnel 

is drilled in a saturated area, it is assumed to 

be a unit. 

 After the calculation of SGR coefficients 

for the intended sections in the tunnel, there 

must exist a criterion to evaluate the amount 

and size of this coefficient, based on which 

groundwater seepage risk into the tunnel 

(with a qualitative and quantitative view) can 

be evaluated. Predicting the rate of inflow 

water into the tunnel can cause the 

appropriate designing of drainage systems 

and even choosing the most appropriate 

excavation method, so the required 

preparations are performed to prevent 

possible risks. This was suggested based on 

the amounts of water inflow in Table (2) 

(Farhadian et al., 2012).  

The larger the SGR coefficient, the more 

the permeated water amount to the tunnel (at 

least in a short time) and therefore, drainage 

tools and methods must be stronger and more 

expensive. Even sometimes, tunnel 

excavation methods must be revised so that 

the possibility of sudden and damaging 

incidents occurrence is decreased. 

 
Artificial Neural Networks 

An artificial neural network (ANN) is a 

digitized model of the human brain and a 

computer program that simulates how the 

human brain processes information. Like 

humans, ANNs are learned (or trained) by 

observing and experimenting with relevant 

examples of training, not programming 

(Agatonovic-Kustrin and Beresford, 2000). 

ANNs are computing algorithms that mimic 

the four essential functions of these 

biological neurons. These functions take 

inputs from other neurons or sources, 

combine them, operate on results, and display 

the final result (Klerfors, 1998). What makes 

ANNs interesting is that once the network is 

set up, it can learn in a self-constructive way 

that mimics brain functions, such as pattern 

recognition, classification, and optimization 

(Haykin, (1994); Fausett, (1994); Klerfors, 

(1998); Kung, (1993); Tarassenko, (2004). 

ANNs were first developed in the 1940s 

(Lin and Chen, 2004). ANNs paid a lot of 

attention to various fields of study and, they 

are used in statistical science, engineering, 

computer science, artificial intelligence, etc. 

Much effort has been made to find practical 

methods for understanding the structure of 

systems or processes that use ANNs. There is 

a lot of literature on neural networks, both 

theoretical and practical, and a wide range of 

practical applications of the technique 

(Bishop (1995); Ripley (1996); Sato (1996) 

and Webb (1999). In the field of ANNs, 

multilayer perceptrons and RBFNs have 

emerged as multilayer networks (Broomhead 

and Lowe, 1988). In particular, the RBFN, a 

hybrid learning method that combined self-

organized learning and supervised learning, 

has recently attracted attention (Moody and 

Darken, 1989). RBFN models built with 

hybrid learning methods have important 

advantages over multilayer perceptrons: 

faster convergence and no identification 

problems. 

 
The Radial Basis Function Networks 

RBFNs were first introduced in 1988 

(Broomhead and Lowe, 1988). The basic 

architecture of an RBFN is shown in Fig. (1). 

An RBFN has three layers, including an input 

layer, a hidden layer and, an output layer. The 

input layer is composed of input data. The 

hidden layer transforms the data from the 

input space to the hidden space using a non-

linear function. The output layer, which is 

linear, yields the response of the network. 
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Table 2- Qualitative and quantitative rating of tunnels site regarding water seepage based on SGR 

coefficient (Katibeh and Alianvari, 2009) 

 
  

 
Fig. 1-The structure of RBFN (Deng et al. 2021) 

 
In the structure of RBFNs, the input data 

X is an I-dimensional vector, which is 

transmitted to each hidden unit. The 

activation function of hidden units is 

symmetric in the input space, and the output 

of each hidden unit depends only on the 

radial distance between the input vector X 

and the center for the hidden unit (Lin and 

Chen, 2004). Different activation functions 

have been proposed for the hidden-layer 

neurons, but normally the selected one is the 

Gaussian function. In this paper, the 

Gaussian functions are applied as activation 

functions of the hidden layer neurons. There 

are six basic functions, which are recognized 

as having useful properties for RBFNs 

(Bishop, 1995; Hardy, 1971; Harpham and 

Dawson, 2006; Mai-Duy and Tran-Cong, 

2003): 

 

1. Multiquadratic : 

 

∅(𝐱) = (x2 + 𝜎2)1/2 ,                         (6) 

 

 Which is a case of 

 

∅(𝐱) = (x2 + 𝜎2)𝛼 0<α<1,                          (7) 

 

2. Gaussian:    

 

∅(𝐱) = exp (−
x2

2𝜎2) 

,                                                                  (8) 

 

3. Inverse multiquadratic : 

 

∅(𝐱) = (x2 + 𝜎2)−𝛽 ,  𝛽 > 0.             (9) 

 

4. Thin plate spline: 

∅(𝐱) = (
x

𝜎
)2 ln (

x

𝜎
).                            (10) 

 

5. Cubic: 
 

∅(𝐱) = x3.                                               (11) 

 

6. Linear: 

SGR 

Tunnel 

rating Class 

Probable conditions for groundwater inflow into 

tunnel (L/sec/min) 

0 - 100 I No risk 0 - 0.04 

100 - 300 II Low risk 0.04 - 0.1 

300 - 500 III Moderate risk 0.1 - 0.16 

500 – 700 IV Risky 0.16 - 0.28 

700 – 1000 

 

V 

 

High risk 

 

Q> 0.28 Inflow of groundwater and mud from 

crashed zones is probable 

1000< VI Critical Inflow of groundwater and mud is highly probable 
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∅(𝐱) = x,                                        (12) 

 

Where ∅(𝐱) is the basis function, 𝜎 is the 

width of the basis function, x=‖x − ck‖, 

where x is the training data, ck is the center 

of the kth neuron in hidden layer and, ‖. ‖ is 

the Euclidean norm. 

The RBFN, a class of single hidden layer 

feedforward networks, is expressed as a 

linear combination of radically symmetric 

nonlinear basis functions and takes the 

following form: 

 

𝑢(𝐱) = ∑ 𝑊𝑘
𝑚
𝑘=1 ∅𝑘(𝐱) + w0                 (13) 

 

Where ∅𝑘(𝐱) is the response of the hidden 

neuron. 𝑊𝑘 is the connecting weight between 

the kth hidden neuron and the output unit, w0 

is the bias term, and 𝑢(𝐱) is the output of the 

network. 

In the Learning Phase of the RBFNs, the 

center and width are decided first. It takes 

advantage of the well-defined meanings of 

the RBFN parameters. The centers are highly 

related to the density of data points. Without 

using the class label, K-means is the most 

typical method to divide the samples into 

different clusters (Kiernan et al., 1996; 

Mendoza et al., 2009; Moody, 1991; Moody 

and Darken, 1989). It minimizes the distance 

between the center and the samples in that 

cluster. Since the class label is available in a 

classification problem, the supervised 

method could be used. Learning Vector 

Quantization (LVQ) algorithm was proposed 

by Kohonen for vector quantization and 

classification tasks (Vogt, 1993; Kohonen, 

1990). Different from unsupervised 

clustering, each cluster center belongs to a 

class. A center is moved closer to samples in 

the same class and away from samples 

belonging to a different class. The decision 

tree can be used to separate the feature space 

into different regions. Each region represents 

the center of the RBFN (Kubat, 1998; Yoo 

and Sethi, 1995). 

The next step is the selection of the width 

for each center. The width can be determined 

by computing the variance of all samples in a 

cluster (Brizzotti and Carvalho, 1999; De 

Castro et al., 1999). K-nearest-neighbor 

algorithm is sometimes applied, and the 

width is calculated as the mean of distances 

among the centers belonging to other K-

nearest hidden neurons (Mak and Cho, 1998; 

Musavi et al., 1992; West and Dellana, 

2009). The next phase is to find the weights 

after the centers and widths are decided. They 

can be easily found by linear optimization 

using any linear least-squares methods. 

Gradient Descent and Singular Value 

Decomposition (SVD) are two popular 

methods (Kiernan et al., 1996; Bruzzone and 

Prieto, 1999; Mak and Cho, 1998). 

 

  Case Study: Amirkabir Tunnel 

 Amirkabir tunnel, located northwest of 

Tehran, Iran, is designed and being operated 

to transfer water from the Amirkabir dam to 

Tehran. One of the difficulties in this project 

is groundwater inflow into the tunnel while 

doing the excavation operations. In this 

study, SGR for this tunnel was predicted 

using RBF networks. 

 

Geology of the Area 

In the performed geological studies, the 

tunnel was divided into 14 different 

geological units that generally encompass 

various sedimentary-volcanic sets from the 

Karaj formation. Its petrology generally 

includes an alteration of tuff, sandstone, fine-

grained conglomerates, and siltstone, lava 

and, agglomerate parts. In this study, we deal 

with investigating the SGR from kilometers 

3.1 to 14.1 of the tunnel. As shown in Fig. 

(2), it is divided into 9 geological engineering 

sections, Gta2 (sandstone and tuff layers), 

Gta3 (sandstone layers, tuff, and micro 

conglomerate), Gta4-1 (sandstone, tuff), 

Gta4-2 (tuff, in sandstone sections and micro 

conglomerate), Sts1 (tuff, siltstone, layers of 

sandstone and micro conglomerate), Sts2-1 

(tuff, limestone), Sts2-2 (tuff, limestone, 

shale and siltstone), Tsh-1 (Sandstone, Shale, 

Siltstone), and Cz (tuff, sandstone, and micro 

conglomerate) (SCE Company, 2006) (Fig. 

2). 
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Fig. 2- Geological sections of Amirkabir tunnel (km 3.1 to 14.1) (SCE Company, 2006). 
 

Rating of Amirkabir Tunnel Site (in terms 

of groundwater seepage hazards based on 

SGR coefficient) 

Field data obtained from the Amirkabir 

tunnel showed two sets of joints in the rock 

mass. Considering parameters like joint 

aperture, tunnel's excavation depth, the width 

of crashed zones, and height of groundwater 

table above the tunnel axis, SGR coefficients 

are calculated in 110 sections of the tunnel 

path (each 100 meters), the summary of 

which is shown in Table 3 and Fig. (3). As 

obtained from the results, SGR method 

divides the tunnel path to 5 various rates 

regarding groundwater seepage hazard. 

Among 110 excavated sections in the tunnel 

path, 70 sections are located in No risk, 20 

sections in Low risk, 3 sections in Moderate 

risk, 11 sections in risky, and 6 sections in 

critical class.  
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Table 3- Classification of 110 excavated sections in Amirkabir tunnel path from kilometers 

3.1 to 14.1 based on groundwater seepage hazard by SGR method. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3- Classification of 110 excavated sections in Amirkabir tunnel path from kilometers 

3.1 to 14.1 based on groundwater seepage hazard by SGR method 

 
 The proposed RBF model  

In this study, using MATLAB software, 

an RBFN was designed to predict SGR. 

Because rock type of the Amirkabir tunnel 

site, parameters like joint aperture, joint 

frequency and karstification are concerned. 

S5, permeability coefficient parameter was 

considered zero because this parameter is 

hidden in rock media, joints frequency, and 

their aperture, and other factors. The amount 

and intensity of annual raining in the area is 

concerned when the tunnel is excavated in the 

unsaturated zone, so because the Amirkabir 

tunnel is located in the saturated zone from 

kilometer 3.1 to 14.1, the score of this factor 

was considered 1, automatically. On the other 

hand, due to the lack of schistosity and 

karstification outcrop in the tunnel path, the 

coefficient of these two parameters in all the 

sections was considered zero. Consequently, 

joint frequency, joint aperture, JRC, JCS of 

each set of joints, water head, overburden, 

and the score of crashed zones (S3) were 

selected as the network's input parameters, 

and various SGR classes were considered as 

output. The data used for training and testing 

the prepared network was acquired from the 

primary studies in the Amirkabir tunnel. The 

optimum network was constructed by testing 

several models and repeating them. Each 

ANN was trained with 3/4 of the data set, and 

remaining was used to evaluate their 

accuracy and trend stability. The values of 

each class and the class frequency for SGR 

classification in all data and training data are 

shown in Fig. (4). A preprocessing of input 

and output data was performed, and they 

were normalized between [-1, 1] thereafter. 

In order to normalize the data, the following 

formula was used: 

 

𝑥 = 2
𝑥 − min 𝑥

max 𝑥 − min 𝑥
− 1 (14)                                                       

                                                            

It is clear that after finishing the 

simulation, the converse of the above 

functions were exerted. The learning rate of 

the network was measured by target 

functions during the learning process. At last, 

the network with the least error and highest 

regression coefficient was selected. The 

network error was calculated through the 

following equation: 

water inflow risk Number of section length (m) % 

No risk 70 6920 63 

Low risk 20 2110 19 

Moderate risk 3 310 3 

Risky 11 1140 10 

High risk 0 0 0 

Critical 6 520 5 

summation 110 11000 100 
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Network error for training data (testing) = 

{number of training data (testing) which are 

not located in their own class/ total number 

of used data for training (testing)}. 

Due to random selection of the training 

and testing data and also network weights, 

the results were different. All networks were 

operated 10 times, and the average was 

considered as the final result. 
 

Results and Discussions 

After the determination of network 

structure, SGR was predicted. 

Gaussian Spread Determination 

One of the most important issues in the 

design of RBFNs is Gaussian spread 

determination. MATLAB software uses 

newrb and newrbe functions for constructing 

an RBFN. This process was performed by 

newrb and newrbe functions. To determine 

optimal Gaussian spread, several networks 

with variable spread values from 0 to 1 and 

0.02 spacing were constructed. Fig. (5) and 

(6) show the percentage mean value of 

network error after 10 runs related to the 

Gaussian spread values of the newrb and 

newrbe functions. 

 

 

 
Fig.4- Analysis of each class and the class frequency for SGR classification in all data and training 

data 

 

 
Fig. 5- The percentage of the mean value of network error related to the amounts of Gaussian spread 

(newrb function) 
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Fig. 6- The percentage of the mean value of network error related to the amounts of Gaussian spread 

(newrbe function) 
 

 
Fig. 7- The percentage of the  mean value of network error related to the neurons' number of the 

hidden layer 
 

As observed in Fig. 5 and Fig. 6, with a 

Gaussian spread of 0.74, the least error 

occurred for structured networks by newrb 

and newrbe functions. 

 

Influence of Neurons' Number of the 

Hidden Layer in Network Error: 

As mentioned, the application of the 

newrb functions is a method for constructing 

RBF networks. Adding neurons into the RBF 

network consecutively, this process 

continued until the error was less than the 

goal value or reached to maximum 

determined neurons' number (total numbers 

of training data). In contrast, the neurons' 

number of newrbe function was constant and 

equal to the total number of training data. In 

this study, the influence of neurons’ number 

of the hidden layer on the network`s error 

was investigated by newrb function. Fig. (7) 

shows the percentage of the mean value of 

network error after 10 runs related to the 

neuron's number of network hidden layer.  

As observed in Fig. (7), with a network 

including 12 neurons in the hidden layer, the 

least error occurred for training and testing 

sets. 

 
Optimal Network 

After performing the above stages, the 

networks with the Gaussian spread value of 

0.74 were constructed and by which SGR 

was modeled. Considering the selection of 

random training and testing data and 
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thereupon the weights, network error values 

in every run were different. Table 4 contains 

data about the percentage of minimum, 

maximum, and mean network error values 

after 10 runs. 

The performance of the trained network 

was investigated by Regression analysis. To 

do so, network output and target vector were 

given to the postreg function. As a result, this 

function gave three parameters, two of which 

were m and b calculated from slope and 

intercepts of plot the network output vs. 

target vector. The third variable returned by 

postreg was the correlation coefficient 

between outputs and targets. The higher 

correlation coefficient the more compatible 

of predicted data and target vector and the 

more performance of the network (Demuth 

and Beale, 1998). Fig. (8) shows the 

regression analysis resulted from modeling 

SGR for test data. 

Fig. (8) shows the SGR classification 

(measured data) and predicted this 

classification for testing data (using RBF). 

According to this figure, the coefficient of 

correlation (R2) of the RBFN model is 

0.9931. This high coefficient of correlation 

shows the accordance between the results of 

the RBFN model and measured data. Also, 

the following values are obtained as the 

output of the postreg function: 

 Slope: 0.99 

 Y-intercept: 0.051 

Regarding regression analysis resulted 

values, it can be concluded that a perfect 

compatibility exists between the results 

obtained from the proposed RBFN and SGR. 

 

Table 4- Network errors for training and testing data 

Data set 

training data 

(newrb 

function) 

testing data 

(newrb 

function) 

training data 

(newrbe 

function) 

testing data 

(newrbe 

function) 

 

Minimum network 

error (%) 

0 0 0 0 

Maximum network 

error (%) 
2.44 10.71 0 7.14 

Mean of network 

error (%) 
1.42 4.76 0 3.57 

 

 
Fig. 8- Regression analysis resulted from modeling SGR for testing data 
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 Conclusion 

In this study, RBFN was used to predict 

the SGR for the Amirkabir tunnel. In 

addition, network structure and the optimum 

network were also determined. Distance 

between the joints, joint aperture, JRC and 

JCS of each joint set, water head, overburden 

and score of crashed zones (S3) were selected 

as input parameters, while various SGR 

classes were considered as network output. 

The data required for network training were 

obtained from preliminary studies in the path 

of the Amirkabir tunnel. The results of this 

research showed that with the help of an 

RBFN, SGR could be predicted well. Also, 

high regression analysis proves the very good 

conformity between results gained from SGR 

and predicted by the RBFN. 
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