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Abstract 

In open channel flow, determining the boundary shear stress and its distribution over the wetted 

perimeter is a significant problem. The shear stress distribution (SSD) is primarily affected by 

secondary flows, sediment transport rate, erosion or sedimentation, and geometry of the channels. 

The presented research uses Shannon entropy and support vector regression (SVR) approach to 

predict the SSD in rectangular channels (RCs). First, the entropy technique proposed by Sterling 

and Knight, (2002) is used to construct the probability density function of transverse SSD, and the 

constant coefficients of density are obtained by comparing experimental results in various aspect 

ratios. Second, to estimate the transverse SSD in a smooth RC, SVR methods have been used. 

According to the results of the sensitivity analysis, the aspect ratio B/H is the most essential 

parameter for SSD estimation. The SVR model performed better when the (b/B), (z/H), and (B/H) 

parameters were also used as input. For the aspect ratios (B/H) 2.86, 4.51, 7.14, and 13.95, the 

SVR model, with an average MAE of 0.044 in bed and 0.053 in wall, gives higher accuracy than 

the Shannon entropy, which has an average MAE of 0.062 in bed and 0.073 in wall for all flow 

depths. The Shannon entropy overestimates shear stress as compared to SVR. As a result, the costs 

of construction of channels may be significant. 
 

Introduction 

In open channel flow, determining the 

boundary shear stress and its distribution 

over the wetted perimeter is a significant 

problem. The SSD is primarily affected by 

secondary flows, sediment transport rate, 

erosion or sedimentation, and geometry of 

the channels. The SSD and flow resistance in 

simple and compound channels with smooth 

and rough surfaces were studied by many 

scholars Kartha and Leutheusser (1970), 

Yang and Lim (1997), Knight and Patel 

(1985a), Knight and Patel (1985b), Knight et 

al. (1994), Sheikh Khozani and Bonakdari 

(2016), Sheikh Khozani and Bonakdari 

(2018) and Lashkar-Ara et al. (2021). 

It is plausible that the transverse SSD in 

wide and broad channels is not uniform. 

Kartha and Leutheusser (1970) conducted a 

series of experiments on the determination of 

SSD to design stable alluvial channels by 

tensile forces. Experiments were performed 
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in a rectangular laboratory flume with 

smooth-wall in aspect ratios between 1 and 

12.5. They measured shear stress by Preston 

tube. For calibration of the Preston tube, the 

indirect method was applied, and the law of 

the wall and velocity logarithmic distribution 

was used. At that time, they indicated that 

none of the available analytical techniques 

could calculate the shear stress for a proper 

design of alluvial channels. 

Lashkar-Ara and Fatahi (2020) have been 

measuring transverse SSD in rectangular 

open channels bed and wall using the Preston 

tube with an optimal diameter. The study's 

results include two dimensionless 

relationships for estimating local shear stress 

in the bed and wall. The aspect ratio B/H, as 

well as the bed relative coordinates b/B in 

cross-section and z/H in sidewall, determine 

these relationships. The study found that the 

aspect ratio B/H has a significant impact on 

the dimensionless bed SSD. Ardiçlioǧlu et al. 

(2006) did an experimental investigation for 

the SSD in a fully developed boundary layer 

area in both smooth and rough surfaces 

throughout the whole length of the cross-

section of an RC. They conducted 48 tests by 

measuring flow velocity on both smooth and 

rough surfaces.  

The logarithmic distribution of flow 

velocity was used to calculate mean 

transverse shear stresses for various aspect 

ratios B/H ranging from 4.2 to 21.6 and 

Froude numbers ranging from 0.12 to 1.23. 

Since experimental methods are difficult and 

time-consuming to calculate the SSD in 

channels, soft computing methods are 

suggested. Cobaner et al. (2010) utilized 

Artificial Neural Networks (ANN) to model 

boundary shear stress in a smooth RC.  

Sheikh Khozani et al. (2018) employed a 

support vector machine (SVM) to estimate 

shear stress in a rough RC. To obtain new 

relationships for the velocity and SSD in 

open channels, Chiu (1987) proposed new 

hydraulic principles of maximum entropy 

and chance. The Shannon’s entropy, which is 

the basis behind such analysis like the 

maximum entropy concept was further 

discussed by Chiu (1991) and similar studies 

by Shuyou and Knight (1996) have been used 

by Araújo and Chaudhry (1998) and Sterling 

and Knight (2002) to estimate open channel 

shear stress. Based on the work of Chiu 

(1991), Shuyou and Knight (1996), Araújo 

and Chaudhry (1998), and Sterling and 

Knight (2002) employed Shannon entropy 

theory to estimate SSD in open channels. 

Sterling and Knight (2002) proposed a 

novel method for estimating SSD in open 

channels with a circular cross section. One 

pitfall of that study is the limitation that the 

model has to cover all extent of hydraulic 

behaviors of a channel, which in turn could 

overshadow the model’s reliability. One 

reason is the difficulty behind the choice of 

parameter assumptions and the resulting 

sensitivity to estimate those parameters.  

In this research, the efficiency of the 

Shannon entropy method in estimating SSD 

in a smooth RC has been evaluated. For this 

aim, first, the method presented by Sterling 

and Knight (2002) is implemented to derive 

the probability density function of shear 

stress transverse distribution, the constant 

coefficients of density are determined by 

examining the findings of the Lashkar-Ara 

and Fatahi (2020). In the second step, the 

support vector regression (SVR) function is 

investigated in the SSD estimation. Finally, 

the outcomes of these two approaches are 

compared to each other as well as the 

Lashkar-Ara and Fatahi (2020) experimental 

results. 

The aim of the presented study was to use 

the entropy method of Shannon to estimate 

the SSD in a smooth RC. The outcome of the 

Shannon entropy method was compared with 

the SVR model and the experimental 

outcomes of Lashkar-Ara and Fatahi (2020). 

The result of the literature review shows that 

no document has been published on the use 

of Shannon entropy and SVR in the 

estimation of SSD in smooth RC’s. 

 

Methodology 
Data Collection 

Data were obtained from Lashkar-Ara and 

Fatahi (2020) experiments, which were 

conducted in 10-meter length flume with 60 

cm width and 70 cm height. These 

experiments were carried out at the hydraulic 

laboratory of Jundi-Shapur University of 

Technology, Dezful, Iran. The flow rate 

ranged from 11.06 to 102.38 liters per second 

for all measurements. Flow rate variations 

cause changes in water depth from 0.043 m 

to 0.21 m, as well as changes in the aspect 
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ratio (B/H) ranging from 2.86 to 13.95. 

Pressure transmitter device with a capacity of 

0.2 bar and a 50 Hz measuring frequency 

were used to measure and evaluate the values 

of total pressure and static difference in 

various of B/H. A weir was added at the end 

of the flume to obtain uniform flow 

conditions. The experimental flume is shown 

in Fig. (1). 

Based on previous experimental and 

field study results, the effective criterion for 

measuring the SSD throughout the wet 

perimeter of a channel may be described as 

follows: 

 

𝑓1(�̄�𝑤 ,ρ ,υ ,g , V, H , S𝑤 , 𝑆𝑜, 𝐵, 𝑧, 𝐾𝑠) = 0  (1) 

𝑓2(�̄�𝑏 ,ρ ,υ ,g , V, H, S𝑤 , 𝑆𝑜, 𝐵, 𝑏, 𝐾𝑠) = 0 (2) 

where �̄�𝑏 is the mean bed shear stress, �̄�𝑤 

is the mean wall shear stress, υ is the 

kinematic viscosity, 𝜌 is the density, V is the 

velocity of flow, g is the gravity acceleration, 

H is the depth of flow, B is the bed width of 

flume, 𝐾𝑠is the height of roughness and Sw is 

the slope of water surface. As demonstrated 

in Eqs. (3) and (4), the Buckingham- π 

theorem was utilized to derive dimensionless 

parameters for wall and bed shear stress. 

𝑓3 (
𝜐

𝑉𝐻
,
𝐾𝑠

𝐻
,
𝑔𝐻

𝑉2
,
𝐵

𝐻
,

𝑧

𝐻
,

�̄�𝑤

ρgHS𝑤

) = 0 (3) 

𝑓4 (
𝜐

𝑉𝐻
,
𝐾𝑠

𝐻
,
𝑔𝐻

𝑉2
,
𝐵

𝐻
,
𝑏

𝐵
,

�̄�𝑏

ρgHS𝑤

) = 0 (4) 

 

Equations (3) and (4) may be rewritten as 

(5) and (6) in the case of smooth channels: 

 
�̄�𝑤

ρgHS𝑤

= 𝑓5 (Re,Fr2,
𝐵

𝐻
,

𝑧

𝐻
) 

(5) 

�̄�𝑏

ρgHS𝑤

= 𝑓6 (Re,Fr2,
𝐵

𝐻
,
𝑏

𝐵
) 

(6) 

 
Where (Fr) is the Froude number and (Re) 

is the Reynolds number. In a smooth RC with 

varying flow depths, 100 data of shear stress 

on wall 𝜏𝑤 and 160 data of shear stress on bed 

𝜏𝑏 from Lashkar-Ara and Fatahi (2020) were 

selected for Shannon entropy and SVR 

models assessment. A total of 70% of the data 

was picked for training and 30% for testing. 

Table (1) contains a summary of the 

experiments. 

Fig. 1- Experimental setup (Lashkar-Ara and Fatahi, 2020) 

 
Table 1- Summary of the experiment 

Parameters Variable Min. Max. Mean 

H (m) Depth of flow 0.043 0.21 0.0928 

B/H aspect ration 2.86 13.95 7.98 

Q (L/s) Discharge 11.06 102.38 34.795 

V (m/s) Velocity 0.429 0.813 0.568 

Fr Froude number 0.66 0.566 0.618 

Re × 104 Reynolds number 6.4 39.87 16.418 

𝑅𝑒∗  Shear Reynolds 0.322 0.609 0.426 

HS Total shear stress 0.442 2.162 0.955 
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Shannon entropy 

The Lagrange coefficient was used by 

Sterling and Knight (2002) to maximize 

Shannon entropy and to provide an equation 

to estimate shear stress: 

 

𝜏 =
1

𝜆
(1 + (𝑒𝜆𝜏𝑚𝑎𝑥 − 1)

𝑦

𝐿
) (7)  

 
Where 𝜏 is the shear stress of local 

boundary, τmax is the maximum boundary 

shear stress, y is the transverse coordinate, L 

is half of the wet perimeter and the 

multipliers of the λ which can be calculated 

as: 
 

𝜆 = (
𝜏𝑚𝑎𝑥 𝑒𝜆𝜏𝑚𝑎𝑥

𝑒𝜆𝜏𝑚𝑎𝑥 − 1
− 𝜌𝑔𝑅𝑆)−1 (8)   

 

Where 𝜌  is the mass density, R is the 

hydraulic radius, g is the gravitational 

acceleration and, S is the channel’s bed slope. 

This formula was used only in the cross-

section of the circle. In a circular channel 

with a flatbed, the relationships between the 

wall and the bed must be defined as follows: 
 

𝜏𝑤

=
1

𝜆𝑤
(1 + (𝑒𝜆𝑤𝜏𝑚𝑎𝑥(𝑤)

− 1)
2(𝑦 − 𝑦𝑤)

𝑃𝑤
)𝑦𝑤⟨𝑦⟨

𝑃𝑤

2
 

(9) 

1

𝜆𝑏
(1 + (𝑒𝜆𝑏𝜏𝑚𝑎𝑥(𝑏)

− 1)
2(𝑦 − 𝑦𝑤)

𝑃𝑏
)

𝑃𝑤

2
⟨𝑦⟨

𝑃𝑏

2
+ 𝑦𝑤 

(10) 

 

Where P is the channel perimeter, and λ 

are the Lagrange multiplier each 

corresponding to the channel bed and wall 

denoted by the subscript of b and w, 

respectively. It’s worth to mentioning that 

before using the Eqs. (9), (10) and Eq. (7), we 

have to estimate the mean and maximum 

shear stresses. 

A pair of mean and maximum shear 

stresses are required to calculate the SSD. For 

estimating the values of 𝜏𝑚𝑎𝑥 and �̄�, the 

results of the Lashkar-Ara and Fatahi (2020) 

studies were applied. They set the flume’s 

bed slope at 9.58 × 10−4
. Aspect ratios of 

2.86, 4.51, 5.31, 6.19, 7.14, 7.89, 8.96, 10.71, 

12.24, and 13.95 were used to determine the 

shear stress distributed by the walls and bed. 

Preston tubes were used to measure the shear 

stress distribution. Assuming a completely 

turbulent and subcritical regime among all 

the experimental data, the best fit equation 

for 𝜏𝑚𝑎𝑥  and �̄� separately for wall and bed 

in aspect ratio 2.89 < B/H < 13.95 was fitted.  

Equations (11)– (14) demonstrate the 

relationships between the variables. 

 

�̄�𝑤

𝜌𝑔𝑅𝑆
=

2.1007 + 0.0462 (
𝐵
𝐻

)

1 + 0.1418 (
𝐵
𝐻

) + (
𝐵
𝐻

)
−0.0424 (11) 

�̄�𝑏

𝜌𝑔𝑅𝑆
=

2.0732 − 0.0694 (
𝐵
𝐻

)

1 − 0.146 (
𝐵
𝐻

) + (
𝐵
𝐻

)
−0.1054 (12) 

𝜏𝑚𝑎𝑥 𝑤

𝜌𝑔𝑅𝑆
=

2.5462 + 6.5434 (
𝐵
𝐻

)

1 + 6.34 (
𝐵
𝐻

) + (
𝐵
𝐻

)
−0.1083 (13) 

𝜏𝑚𝑎𝑥 𝑏

𝜌𝑔𝑅𝑆
=

3.157 + 0.8214 (
𝐵
𝐻

)

1 + 0.8535 (
𝐵
𝐻

) + (
𝐵
𝐻

)
−0.1401 (14) 

 
The mean and maximum wall and bed 

shear stress are �̄�𝑤&�̄�𝑏  and 𝜏𝑚𝑎𝑥 𝑤&𝜏𝑚𝑎𝑥 𝑏, 

respectively. As a result, based on B/H and 

𝑆𝑜, the transverse SSD for an RC can be 

estimated. 

Using the results of Lashkar-Ara and 

Fatahi (2020) and determining the values of 

�̄�𝑤&�̄�𝑏 using Eqs. 11 to 14, the Lagrange 

coefficients were calculated by Eqs 9 and 10. 

The results are summarized in Table (2). 

 
Support Vector Regression analysis 

The fundamental basis of SVM has been 

developed by Vapnik (1998), which receives 

wide admiration among researchers because 

of having characteristics of a great empirical 

performance. This machine learning method 

works on the identification of a hyper-plane 

constructed in an infinite-dimensional space 

that separates two classes in a series of 

classification. An SVM has been used for 

classification, regression, or other similar 

tasks Ebrahimi and Rajaee (2017). Support 

vector machines have been known by two 

main categories: support vector classification 

(SVC) and SVR. 

SVM is a method of a learning machine 

that uses a high dimensional space. This 

offers predictive functions that are built on a 
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support vector subset. SVR relies only on a 

sub-set of training data, as the cost function 

for model construction is not concerned with 

training points beyond the margin Basak et 

al. (2007). The efficiency of the 

generalization of SVR is calculated by the 

calibration of the kernel function and 

parameters. C and π are SVR parameters and 

indicate the constant regularization and 

constant kernel function which control the 

complexity of the model prediction 

(regression), and the kernel function changes 

the input space dimensionality to perform the 

regression process more confidently, 

respectively. Due to its accuracy and reliable 

efficiency, RBF has become the researcher's 

option as the kernel function for SVR over 

the years Suryanarayana et al. (2014). SVM's 

regression subset, known as SVR, was 

applied to estimate the transverse SSD in a 

smooth RC. Therefore, the Radial Basis 

Function (RBF) is adopted in this study and 

is expressed as 

 
𝑘(𝑥𝑖 , 𝑥) = 𝑒𝑥𝑝(𝛾‖𝑥 − 𝑥𝑖‖2)  (15) 

 
The estimation precision is determined by 

collecting of the three parameters of the SVR, 

namely C, γ, and ε. Using the trial and error 

method, these parameters are standardized, 

and results are shown in table (3). 

 
Statistical analysis 

The four statistical assessment metrics 

used to determine the Shannon entropy and 

SVR models performance are the Maximum 

Error (ME), Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), and Nash–

Sutcliffe Efficiency (NSE), which are 

calculated as follows (Willmott and 

Matsuura (2005) and McCuen et al. (2006)): 

 

ME = Max|𝑃𝑖 − 𝑂𝑖| (16) 

MAE =
1

𝑁
∑|𝑃𝑖 − 𝑂𝑖|

𝑁

𝑖=1

 (17) 

RMSE = √
∑ (𝑃𝑖 − 𝑂𝑖)2𝑁

𝑖=1

𝑁
 (18) 

NSE = 1 −
∑ (𝑃𝑖 − 𝑂𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖 − �̄�)2𝑁
𝑖=1

 (19) 

 
where Oi represents the observed 

parameter value, Pi represents the projected 

parameter value, �̄� represents the mean 

observed parameter value, and N represents 

the number of samples. 

 

Table 2- Summary of the results of Lagrange coefficients in the Shannon entropy model 

b/h 
Experimental shear stress   Lagrange coefficents 

�̄�𝑏 �̄�𝑤  𝜆𝑏 𝜆𝑤 

2.86 1.435 1.200  1.415 8.262 

4.51 1.012 0.846  2.087 11.510 

5.31 0.894 0.738  3.099 15.322 

6.19 0.761 0.638  3.099 15.322 

7.14 0.709 0.556  3.515 12.204 

7.89 0.655 0.498  4.540 12.305 

8.96 0.603 0.450  5.930 14.716 

10.71 0.516 0.372  7.485 16.433 

12.24 0.466 0.326  10.213 18.122 

13.95 0.409 0.278  13.687 20.985 

 

Table 3- Kernel constant after try and error 

Kernel function Kernel constants 

C γ ε 

RBF 100 0.1 1 
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Results and discussion 
SVR modeling 

The sensitivity of the SVR model to each 

input parameter is assessed in this section. 

Three models were developed for this 

purpose. SVR models implemented in the 

present study are described as: 

For the bed: 

 

 

𝑆𝑉𝑀𝑀𝑜𝑑𝑒𝑙(2) :
𝑏

𝐵
,
𝐵

𝐻
, 𝐹𝑟, 

𝑆𝑉𝑀𝑀𝑜𝑑𝑒𝑙(3) :
𝑏

𝐵
,
𝐵

𝐻
, 

 
For the wall: 

𝑆𝑉𝑀𝑀𝑜𝑑𝑒𝑙(1) :
𝑧

𝐻
,
𝐵

𝐻
, 𝐹𝑟, 𝑅𝑒  

𝑆𝑉𝑀𝑀𝑜𝑑𝑒𝑙(2) :
𝑧

𝐻
,
𝐵

𝐻
, 𝐹𝑟, 

𝑆𝑉𝑀𝑀𝑜𝑑𝑒𝑙(3) :
𝑧

𝐻
,
𝐵

𝐻
, 

Different models were examined for 

every channel segment to examine the 

influence of each input parameter on the SVR 

model accuracy. The results of the simulation 

of the bed shear stress showed that the SVR 

model (1) consists of the input parameters 

(b/B, B/H, Fr, Re) had the lowest error 

(average RMSE = 0.055), and in wall shear 

stress modeling, SVR model (Model 2) with 

the inputs z/H, B/H, Fr had the lowest error 

(average RMSE=0.064). Among the SVR 

models with ternary variables of input, 

Model 3, with b/B and B/H as input variables 

with NSE value of 0.942, performed the best 

in modeling bed shear stress while Model 3 

with z/H and B/H as input variables with NSE 

value of 0.832, performed the best in 

modeling wall shear stress. Therefore, B/H 

has a significant impact on the SVR model 

efficiency and validates the Model 3 

performance. As a result of the sensitivity 

analysis, the Reynolds number can be 

ignored in Model 2 because the flow 

condition is fully developed. The statistical 

results of the SVR model with different input 

combinations are shown in Table (4). 

 
Table 4- Evaluation results of the SVR model with various input cases 

B/H Input Variable 
Bed 

Input Variable 
Wall 

ME MAE RMSE NSE ME MAE RMSE NSE 

2.86 b/B,B/H, Fr, Re 0.1938 0.0495 0.0787 0.9589 z/H,B/H, Fr, Re 0.0617 0.0363 0.0516 0.8021 

2.86 b/B,B/H, Fr 0.2045 0.0650 0.0885 0.9571 z/H,B/H, Fr 0.0343 0.0288 0.0450 0.8416 

2.86 b/B,B/H 0.1443 0.0690 0.0789 0.9502 z/H,B/H 0.0383 0.0278 0.0424 0.8026 

           

4.51 b/B,B/H, Fr, Re 0.5270 0.0176 0.0246 0.9951 z/H,B/H, Fr, Re 0.0668 0.0493 0.0546 0.9189 

4.51 b/B,B/H, Fr 0.0619 0.0286 0.0335 0.9944 z/H,B/H, Fr 0.1402 0.0442 0.0545 0.9314 

4.51 b/B,B/H 0.0650 0.0229 0.0301 0.991 z/H,B/H 0.1030 0.0388 0.0496 0.9095 

           

7.14 b/B,B/H, Fr, Re 0.0489 0.0269 0.0294 0.9916 z/H,B/H, Fr, Re 0.0744 0.0614 0.0514 0.9216 

7.14 b/B,B/H, Fr 0.0451 0.0255 0.0277 0.9922 z/H,B/H, Fr 0.0482 0.0501 0.0538 0.893 

7.14 b/B,B/H 0.0425 0.0243 0.0266 0.9907 z/H,B/H 0.1037 0.0376 0.0501 0.8954 

           

13.95 b/B,B/H, Fr, Re 0.1205 0.0677 0.0903 0.8318 z/H,B/H, Fr, Re 0.0720 0.0612 0.1045 0.6942 

13.95 b/B,B/H, Fr 0.1219 0.0607 0.0878 0.8287 z/H,B/H, Fr 0.2400 0.0942 0.1061 0.7125 

13.95 b/B,B/H 0.1678 0.0716 0.0978 0.8394 z/H,B/H 0.2092 0.1109 0.1246 0.7238 

           

Average Model (1) 0.222 0.0404 0.055 0.944  0.068 0.052 0.065 0.834 

Average Model (2) 0.108 0.044 0.059 0.943  0.115 0.054 0.064 0.844 

Average Model (3) 0.105 0.047 0.058 0.942  0.113 0.053 0.066 0.832 

Total Average 0.145 0.044 0.057 0.943  0.099 0.053 0.065 0.837 

 

 

 

 

 

 

 

(1) : , , , Re
b B

SVM Model Fr
B H
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There is no significant difference when 

Reynolds number (Re) is left out of the input 

parameters, as indicated in the table. The 

influence of the Froude number may be 

ignored because all of the experiments were 

conducted at subcritical flow conditions; 

hence, the parameter Fr has been omitted 

from Model 3. The SVR model's 

performance was not much improved by 

omitting the Re and Fr parameters, and the 

SVR model appears to be sensitive to the B/H 

parameter. It is clear that the B/H ratio is 

essential in shear stress prediction, as this 

parameter plays an important role in the 

mentioned equations. 

Therefore, Model 3 is chosen as the most 

suitable model for the bed and wall. Figures 

(2) and (3) show the estimated results of the 

SVR model plotted as scatter against the 

experimental data for the dimensionless 

parameter of bed and wall shear stresses. As 

seen in these figures, the regression analysis 

shows the results obtained by the SVR model 

have almost fitted against the experimental 

data for both the bed and wall shear stresses 

of the channel. The result of NSE is higher 

for the dimensionless bed shear stress 

(average NSE is 0.942) than dimensionless 

wall shear stress (average NSE is 0.832), and 

both models are shown to have better 

performance than the other SVR models 

implemented in this study.  

 

  

  

Fig. 2- Comparison SVR result in 𝝉𝒃 �̄�𝒃⁄ prediction versus laboratory observations at : (a) 

B/H=2.86, (b) B/H=4.51, (c) B/H=7.14, and (d) B/H=13.95. 
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Fig. 3- Comparison SVR result in 𝝉𝒘 �̄�𝒘⁄ prediction versus laboratory observations at : (a) 

B/H=2.86, (b) B/H=4.51, (c) B/H=7.14, and (d) B/H=13.95. 
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shows the Shannon entropy model's 

performance metric for estimating SSD. 

All the test data utilized to model SSD 

using the SVR are well recognized as seen in 

these statistics. According to the statistical 

metric, all test functions used to estimate the 

SSD using the SVR were realized. 70% of 

total data was used for training and 30% was 

used for testing the SVR models for SSD 

estimation. The SVR model predicted bed 

shear stress better than the Shannon entropy 

model for all aspect ratios B/H, as shown in 

Figure 4. The SVR estimates the bed SSD 

better compared to Shannon entropy for 

B/H=2.86, 4.51, 7.14 (Fig. 4(a) to 4(c)) while 

the Shannon entropy model seems to be 

better than the SVR for B/H=13.95 (Fig. 

4(d)). The SVR model predicted wall SSD 

better than the Shannon entropy model in 

Figures 5(a), 5(b), and 5(c) for B/H = 2.86, 

4.51, and 7.14, respectively, while the 

Shannon entropy model predicted wall SSD 

more precisely in Figure 5(d). At increasing 

flow depth, the SVR model predicted bed and 

wall shear stress better than the Shannon 

entropy-based model. 

When a model predicted higher shear 

stress values, it's obvious that channel design 

would be problematic. As a result, using the 

Shannon entropy technique to channel 

construction might be challenging. When the 

SVR model's observations became more 

y = 1.0034x

0

0.3

0.6

0.9

1.2

1.5

0 0.3 0.6 0.9 1.2 1.5

Observed

P
re

di
ct

ed

Observed vs Predicted

Perfect Agreement

10% Deviation Line

w
w




w w 

)a( y = 1.0247x

0

0.3

0.6

0.9

1.2

1.5

0 0.3 0.6 0.9 1.2 1.5

Observed

P
re

d
ic

te
d

Observed vs Predicted

Perfect Agreement

10% Deviation Line

w
w




w w 

)b(

y = 0.9717x

0

0.3

0.6

0.9

1.2

1.5

0 0.3 0.6 0.9 1.2 1.5

Observed

P
re

d
ic

te
d

Observed vs Predicted

Perfect Agreement

10% Deviation Line

w
w




w w 

)c( y = 0.9265x

0

0.3

0.6

0.9

1.2

1.5

0 0.3 0.6 0.9 1.2 1.5

Observed

P
re

d
ic

te
d

Observed vs Predicted

Perfect Agreement

10% Deviation Line

w
w




w w 

)d(



9 

Prediction of Transverse Shear …                                                      Vol. 46, No. 4, 2024, pp. 1-12 

  

precise, it could be utilized to more 

consistently design stable channels. As for 

one example, both methods ignore the effect 

of secondary flows; however, in the case of 

the SVR model, the results show improved 

performance. The results showed that the 

flexibility of the SVR model to estimate SSD 

is higher than the Shannon entropy and can 

overestimate the results when faced with a 

channel's most uncertain behaviors. The bed 

shear stress values are decreased in the center 

of the channel (Fig. 5), which varies from 

other cases. As demonstrated in Figures 2 and 

3, the SVR model's fit line is closer to the best 

fit line than the other models, and its 

prediction is more accurate with a higher 

NSE value based on statistical metrics 

(Tables 4 and 5). 

The SSD predictions based on SVR and 

Shannon entropy models exhibit the same 

tendency in evaluating the location of peak 

shear stress as the channel centerline, which 

is closer to the experimental results. 

 

Table 5- Shannon entropy model statistical outcomes compared to experimental data 

B/H 
Bed  Wall 

ME MAE RMSE NSE  ME MAE RMSE NSE 

2.86 0.187 0.0611 0.0746 0.9332  1.3091 0.0678 0.0777 0.7907 

4.51 1.338 0.0560 0.0655 0.9486  1.3091 0.0754 0.0830 0.7899 

7.14 1.388 0.0620 0.0705 0.9419  1.660 0.0651 0.0787 0.8423 

13.95 1.423 0.0685 0.0740 0.8665  0.9562 0.0846 0.1017 0.8548 

          

Average 1.084 0.062 0.071 0.922  1.308 0.073 0.085 0.819 

 

  

 
 

Fig.5- Comparison the prediction of 𝝉𝒃 �̄�𝒃⁄ distribution by Shannon entropy model 

versus laboratory observations and SVR model at: (a) B/H=2.86, (b) B/H=4.51, (c) 

B/H=7.14, and (d) B/H=13.95. 
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Fig. 6- Comparison the prediction of 𝝉𝒘 �̄�𝒘⁄ distribution by Shannon entropy model 

versus laboratory observations and SVR model at: (a) B/H=2.86, (b) B/H=4.51, (c) 

B/H=7.14, and (d) B/H=13.95. 
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result, using SVR instead of Shannon entropy 

to estimate SSD in RC and design stable 

channels may be less risky and costly to 

implement. 
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