Experimental Investigation of Flat, Curved and Angled Submerged Vane’s Placement Effect on Bridge Pier Scouring

Document Type : Research Paper



One of the methods for a local scour countermeasure at bridge piers is the use of submerged vanes. Vanes change the regime of bed load movement that led to control place of deposition and erosion. In this paper the effects of submerged vanes with different forms flat, curved and angled in number (2 and 6) and various configurations (the distance D and located on the pier symmetrically with respect to the flow line) on reducing local scour around cylindrical pier with angle of 20° was performed to investigate. Experiments were conducted in a 10 m long and 0.3 m wide flume and a cylindrical pier of 2.54 cm diameter. Clear-water scour tests with u*/u*c=0.92 were performed. The length of the vanes was equal the pier width and was installed on the bed. Results showed that reduction of scour with different arrays of six vanes was 93%. The highest reduction in scour depth was achieved for curved vanes are placed around the pier.


1-       رضاپوریان، س.، صمدی بروجنی، ح. و قربانی، ب.، 1388. بررسی آزمایشگاهی تعیین موقعیت مناسب سری پره­های مستغرق در کنترل آبشستگی پای پل­ها. هشتمین کنفرانس هیدرولیک ایران.
2-       شجاعی، پ.، فرسادی­زاده، د.، حسین­زاده دلیر، ع.، سلماسی، ف. و قربانی، م.،1391. کاربرد صفحات مستغرق در کاهش آبشستگی پایه استوانه­ای پل­ها.  نشریه دانش آب و خاک، 22(1): 107-91.
3-       شفاعی بجستان، م. 1373. هیدرولیک رسوب، انتشارات دانشگاه شهید چمران اهواز.
4-       Barkdoll, D., Ettema, R., and A.J. Odgaard. 1999. Sediment control at lateral diversions: limits and enhancement to vane use. Journal of Hydraulic Engineering, 128(8):132-136.
5-       Chiew, Y.M. 1984. Local scour at bridge piers. University of Auckland, School of Engineering, New Zealand, Report No.355.
6-       Chiew, Y.M. and B.W. Melville. 1987. Local scour around bridge piers. Journal of Hydraulic Research, ASCE, 25(1):15-26.
7-       Ghorbani, B. and J. A. Kells. 2008. Effect of submerged vanes on the scour occurring at a cylindrical pier Journal of Hydraulic Research, 46 (4):610-619.
8-       Grimaldi, C. 2005. Non-conventional countermeasures against local scouring at bridge piers, Dissertazione per il conseguimento di Ricerca in Idraulica per I Ambiente e il Territorio. Dipartimento di Difesa del Suolo "V. Marone", Universita della Calabria.
9-       Gupta, P. and N. Sharma. 2007. Performance evaluation of tapered vane. Journal of Hydraulic Research, 45(4): 472-477.
10-   Marelius, F. and K. Sinha. 1998. Experimental investigation of flow past submerged vanes. Journal of Hydraulic Engineering, 124(5): 542-546.
11-   Marelius, F. and K. Sinha. 2000. Analysis of flow past submerged vanes. Hydraulic, 38(1): 65-71.
12-   Neill, R. and J. Evans, 1997. Sediment control at water intakes. Journal of Hydraulic Engineering, 123(7):670-671.
13-   Odgaard, A.J. and J.F. Kennedy. 1983. River-bend bank protection by submerged vanes Journal of Hydraulic Engineering, 109(8): 1161-1173.
14-   Raudkivi, A. and R. Ettema. 1983. Clear-water scour at cylindrical piers. Journal of Hydraulic Engineering, 109(3): 338-350.
15-   Soon-Keat, T., Guoliang, Y., Siow-Yong, L. and Muk-Chen. 2005. Flow structure and sediment motion around submerged vanes in open channel. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 131(3):132-136.
16-   Tafarojnoruz, A., Gaudio, R. and F. Calomino. 2012. Evaluation of flow-altering countermeasures against bridge pier scour.  Journal of Hydraulic Engineering, 138(3):297-305.                                                                                                                                                                             
17-  Tafarojnoruz, A., Gaudio, R., Grimaldi, C. and F. Calomino. 2010. Required conditions to achieve the maximum local scour depth at a circular pier. Proc., XXXII Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Farina, Palermo, Italy.
18-   Voisin, A., and R. D.  Townsend. 2002. Model testing of submerged vanes in strongly curved narrow channel bends. Journal of Civil Engineering. 29(1):37-59.
19-   Wang, Y. and A.J. Odgaard. 1996. Sediment control at water intakes. Journal of Hydraulic Engineering, ASCE 122(6): 353- 356.
Volume 40, 1-1
Special Issue
June 2017
Pages 111-122
  • Receive Date: 07 November 2015
  • Revise Date: 07 June 2017
  • Accept Date: 02 April 2016
  • Publish Date: 01 January 1970