An Estimation of Actual Evapotranspiration and Single and Dual Crop Coefficients for Calendula officinalis L.(Case Study: Kerman)

Document Type : Research Paper

Abstract

To date, Calendula Officinalis L. applications have been expanded as a decorative and medical plant, in horticulture, green spaces, pharmaceuticals, and cosmetics industry. Calendula officinalis L. can be broadly applicable as an antiseptic and anti-inflammatory as well as a light antibacterial and antiviral agent. Being native to Mediterranean countries, water requirement and crop coefficient (Kc) pertaining to Calendula officinalis L. in arid regions need more evaluations. To know about the water requirement of crops is necessary to manage agricultural water and irrigation scheduling in hydrological studies and field management. This is closely related to the exact estimation of crop evapotranspiration (ETc) which depends on crop characteristics, development stage, weather parameters, environmental status, and management practices.
Miranda et al. (2006) used weighing lysimeter for measuring  tabasco pepper daily evapotranspiration and crop coefficient. Their results showed total ETc observed during the 300-day crop season was 888 mm, with maximum daily value of 5.6 mmd-1. Ghamarnia et al. (2014) used drainage lysimeters to estimate Kc of black cumin in semi-arid regions of Iran. In their research, the black cumin water requirement of 724 mm was estimated using water balance method. Bakhtiari et al. (2011) recorded hourly data from Grass reference evapotranspiration in three periods in a year using lysimeter in the semi-arid climate of Kerman Province. Lysimetric data can be used to estimate six grass evapotranspiration models, including; FAO-56 Penman–Monteith, Penman-Kimberly 1996, FAO-24 Blaney-Criddle, FAO-24 Radiation, Makkink, and Hargreaves-Samani. In all three periods, the Makkink method indicated poor performance; hence, it cannot be recommended for this region.
Crop coefficients were calculated for many plants except medicinal plants during the growing season. The results were reported by FAO in the table below. According to the studies mentioned above, the crop coefficient and crop evapotranspiration were calculated for medical plants. In Iran, due to the great use of medicinal plants as a food additive or medicine, calculating the crop coefficient and evapotranspiration for medical plants is inevitable. Low rainfall in arid and semi-arid climate regions of Iran, makes it necessary to calculate the evapotranspiration, in order to determine the amount of water required for the cultivation region of medicinal plants.

Keywords

Main Subjects


1-    امید بیگی، رضا. 1379. رهیافتهای تولید و فرآوری گیاهان دارویی ، جلد اول، چاپ دوم، انتشارات طراحان نشر.
 
2-    امید بیگی، رضا.1384 . تولید و فرآوری گیاهان دارویی(جلد اول)، به نشر( انتشارات آستان قدس رضوی).
 
3-    ثقه الاسلامی، محمد جواد. و موسوی، غلام رضا. 1387. اثر تراکم و تاریخ کاشت بر عملکرد دانه و گل همیشه بهار(Calendula officinalis L.). مجله پژوهش های زراعی ایران، 6(2):  263- 296 .
 
4-    عابدی کوپایی، جهانگیر. اسلامیان، سعید. و امیری، محمد جواد. 1387. مقایسه چهار روش تخمین تبخیر- تعرق سطح مرجع با داده­های میکرولایسیمتری در منطقه اصفهان. دومین همایش ملی مدیریت شبکه­های آبیاری و زهکشی، دانشگاه چمران اهواز،  8 - 10 بهمن.
 
5-    عامری، علی اکبر. و نصیری محلاتی، مهدی. 1387. اثرات سطوح مختلف نیتروژن و تراکم بر میزان تولید گل و ماده مؤثره و کارایی مصرف نور در گیاه دارویی همیشه بهار(Calendula officinalis L.). مجله پژوهش و سازندگی در منابع طبیعی، 81: 144 - 133.
 
6-    فتحعلیان، فریده.، نوری امام زاده­ئی، محمد رضا. 1391. تعیین تبخیر ـ تعرق و ضریب گیاهی با استفاده از میکرولایسیمتر در شرایط گلخانه. مجله علوم و فنون کشت­ها گلخانه ای،12: 133 - 125.
 
7-    قمرنیا، هوشنگ. جعفری زاده، مریم. میری، الهام. و قبادی، محمد. اقبال. 1390. برآورد ضریب گیاهی گشنیز (Coriandrum sativum L.)  در منطقه­ای با اقلیم نیمه خشک. فصلنامه مدیریت آب و آبیاری، 1 (2):83 - 73.
 
8-    Allen, R.G., Clemmens, A.J., Burt, C.M., Solomon, K. and T. O'Halloran. 2005. Prediction accuracy for projectwide evapotranspiration using crop coefficients and reference evapotranspiration. Journal of Irrigation and Drainage Engineer, 131: 24-36.
 
9-    Allen, R.G., Pereira L.S., Raes, D. and M. Smith. 1998. Crop evapotranspiration:  Guidelines for computing crop water requirements. United Nations Food and Agriculture Organization, Irrigation and Drainage, Paper N.56, Rome.
 
10- Bakhtiari, B., Ghahreman, N., Liaghat, A.M. and G. Hoogenboom. 2011. Evaluation of reference evapotranspiration models for a semiarid environment using lysimeter measurements. Journal of Agriculture Science Technology, 13:223-237.
 
11- Benli, B., Kodal, S., Ilbeyi, A. and H. Ustun. 2006. Determination of evapotranspiration and basal crop coefficient of alfalfa with a weighing lysimeter. Agricultural Water Management, 81: 358–370.
12- Ghamarnia, H., Miri, E. and M. Ghobadei. 2014. Determination of water requirement, single and dual crop coefficients of black cumin (Nigella sativa L.) in a semi-arid climate. Irrigation Science, 32: 67–76.
 
13- Miranda, F.R., Gondim, R.S. and C.A.G. Costa. 2006. Evapotranspiration and crop coefficients for tabasco pepper (Capsicum frutescens L.). Agricultural Water Management, 82: 237–246.
 
14- Wegehenkel, M and H.H. Gerke. 2013. Comparison of real evapotranspiration measured by weighing lysimeters with simulations based on the Penman formula and a crop growth model. Journal of Hydrology and Hydromechanics, 61(2): 161-172.
Volume 40, Issue 3
December 2017
Pages 109-121
  • Receive Date: 05 January 2016
  • Revise Date: 05 July 2016
  • Accept Date: 12 July 2016
  • Publish Date: 22 November 2017