1- Abida, H., 2009. Identification of compound channel flow parameters. Journal of Hydrology and Hydromechanics, 57(3), pp.172-181.
2- Akan, A. O. 2011. Open Channel Hydraulics: Butterworth-Heinemann.
3- Barton, G.J., Moran, E.H. and Berenbrock, C., 2004. Surveying cross sections of the Kootenai River between Libby Dam, Montana, and Kootenay Lake, British Columbia, Canada (No. 2004-1045). US Geological Survey.
4- Becker, L. and Yeh, W.W.G., 1972. Identification of parameters in unsteady open channel flows. Water Resources Research, 8(4), pp.956-965.
5- Becker, L. and Yeh, W.W.G., 1973. Identification of multiple reach channel parameters. Water Resources Research, 9(2), pp.326-335.
6- Cunge, J.A., Holly, F.M. and Verwey, A., 1980. Practical aspects of computational river hydraulics.
7- D’Oria, M., Mignosa, P. and Tanda, M.G., 2014. Bayesian estimation of inflow hydrographs in ungauged sites of multiple reach systems. Advances in Water Resources, 63, pp.143-151.
8- Ding, Y. and Wang, S.S., 2005. Identification of Manning's roughness coefficients in channel network using adjoint analysis. International Journal of Computational Fluid Dynamics, 19(1), pp.3-13.
9- Eli, R.N., Wiggert, J.M. and Contractor, D.N., 1974. Reverse flow routing by the implicit method. Water Resources Research, 10(3), pp.597-600.
10- Fread, D.L. and Smith, G.F., 1978. Calibration technique for 1-D unsteady flow models. Journal of the Hydraulics Division, 104(7), pp.1027-1044.
11- Friedman, J., Hastie, T. and Tibshirani, R., 2001. The elements of statistical learning (Vol. 1, No. 10). New York: Springer series in statistics.
12- Gessese, A. and Sellier, M., 2012. A direct solution approach to the inverse shallow-water problem. Mathematical Problems in Engineering, 2012.
13- Hansen, P.C., 1998. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, SIAM, Philadelphia. Google Scholar, pp.1-214.
14- Henderson, F. M. 1996. Open channel flow: Macmillan.
15- Khatibi, R.H., Williams, J.J. and Wormleaton, P.R., 1997. Identification problem of open-channel friction parameters. Journal of Hydraulic Engineering, 123(12), pp.1078-1088.
16- Nguyen, H.T. and Fenton, J.D., 2005. Identification of roughness in compound channels. In MODSIM 2005 international congress on modelling and simulation. Modelling and Simulation Society of Australia and New Zealand (pp. 2512-2518).
17- Price, R.K., 1974. Comparison of four numerical methods for flood routing. Journal of the Hydraulics Division, 100(Proc. Paper 10659).
18- Richard, C., Borchers, B. & Thurber, C., 2004. Parameter Estimation and Inverse Problems. s.l.:Academic Press.
19- Szymkiewicz, R., 1993. Solution of the inverse problem for the Saint Venant equations. Journal of Hydrology, 147(1-4), pp.105-120.
20- Szymkiewicz, R., 2008. Application of the simplified models to inverse flood routing in upper Narew river (Poland). Publications of the Institute of Geophysics, Polish Academy of Sciences, (405), pp.121-135.
21- Westaway, R.M., Lane, S.N. and Hicks, D.M., 2000. The development of an automated correction procedure for digital photogrammetry for the study of wide, shallow, gravel‐bed rivers. Earth Surface Processes and Landforms, 25(2), pp.209-226.
22- Wormleaton, P.R. and Karmegam, M., 1984. Parameter optimization in flood routing. Journal of Hydraulic Engineering, 110(12), pp.1799-1814.
23- Wu, W., 2008. Computational River Dynamics, Sediment Laden Drainage, Betsiboka River, Madagascar. Courtesy of NASA. National Aeronautics and Space Administration, Houston, USA. Taylor & Francis Group, London. Google Scholar.
24- Wu, Q., Rafiee, M., Tinka, A. and Bayen, A.M., 2009, December. Inverse modeling for open boundary conditions in channel network. In Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on (pp. 8258-8265). IEEE.