1- Baker, L. and Ellison, D., 2008. Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma, 144, pp. 212-224.
2- Blake, G. and Hartage, K., 1986. Bulk density. In Methods of Soil Analysis, Part Klute. ASA Monogor Madison. Soil Science Society of America, pp. 363-376.
3- Botula, Y. D., Nemes, A., Mafuka, P., Van Ranst, E. and Cornelis, W., 2013. Prediction of water retention of soils from the humid tropics by the nonparametric k-nearest neighbor approach. Vadose Zone Journal, 12(2), pp. 1-17.
4- Chen, S., Yu, P. and Tang, H., 2010. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385, pp. 13-23.
5- Gee, G. W. and Bauder, J. W., 1986. Particle-size analysis, hydrometer method. In Klute et al. (eds.) Method’s of Soil Analysis Agron. Soil Science Society of America, pp. 404-408.
6- Hong W., 2011. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm, Neurocomputing, 74, pp. 2096-2107.
7- Kaihua, L., Shaohui, X., Jichun ,W., Qing, Z. and N. Lesheng., 2014. Using support vector machines to predict cation exchange capacity of different soil horizons in Qingdao City, China. Journal of Plant Nutrition and Soil Science, 177, pp. 775–782.
8- Kakaeilafdani, E., Moghaddamnia, A. and Ahmadi, A., 2013. Daily suspended sediment load prediction using artificial neural networksand support vector machines. Journal of Hydrology, 478, pp. 50-62.
9- Kisi, O. and Cimen, A., 2011. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. Journal of Hydrology, 399(2), pp. 132-140.
10- Koekkoek, E. J. and Booltink, H., 1999. Neural network models to predict soil water retention. European Journal of Soil Science, 50, pp. 489-495.
11- Lin, G., Chen, G., Huang, P. and Chou, Y., 2009. Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. J. of Hydrology, 372, pp. 17-29.
12- MahdaviMeymand, A. and Ahadian, J., 2015. Comparison of Statistical, Experimental, neural network and fuzzy neural network methods in estimation of air Overflow needed. Journal of Irrigation Science and Engineering, 38 (3), pp. 51-61. (In Persian).
13- Minasny, B. and McBratney, A., 2002. The Neuro-m method for fitting neural network parametric pedotransfer functions. Soil Science of Society America, 66, pp. 352–361.
14- Nemes, A., Schaap, M. and Wosten, J., 2003. Functional evaluation of pedotransfer functions derived from different scales of data collection, Journal of Soil Science, 67, pp. 1093–1102.
15- Nguyen, P.M., De Pue, J., Van, K. L. and Cornelis, W., 2015. Impact of regression methods on improved effects of soil structure on soil water retention estimates, Journal of Hydrology, 29, pp. 598-606.
16- Noori, R., Karbassia, A., Moghaddamniac, D., Hand, M.H., Zokaei-Ashtianie, A., Farokhniab, F. and GhafariGoushehc, M., 2013. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401 (3), pp. 177-189.
17- NikbakhtShahbazi, A., Zahraie, B. and Naseri, M., 2013. Seasonal Meteorological Drought Forecasting Using Support Vector Machines. Journal of Water and Wastewater, 2, pp. 73-85. (In Persian).
18- Shirani, H., 2011. Estimation of some soil moisture characteristic curve points including FC and PWP using soil transfer functions and regression method in Kerman. Journal of Agricultural Science and Technology Soil and Water Sciences, 59 (16), pp. 141-150. (In Persian).
19- Schaap, M. G. and F. Leij., 1998. Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil and Tillage Research, 47, pp. 37-42.
20- Shukri, Q., Sadeghi, M. And Ahmadi Marwash, M., 2013. Presentation of a Combined Data Preprocessing Method in Regression Vector Machine to Predict the Quality of Refined Oil. Journal of Petroleum Research, 75 (23), pp. 102-116. (In Persian).
21- Ungaro, F., Calzolari, C. and Busoni, E., 2005. Development of pedotransfer functions using a group method of data handling for the soil of the Pianura Padano–Veneta region of North Italy. Water Retention Properties Geoderma, 124, pp. 293-317.
22- Vapnik, V. N. and Cortes, C., 1995. Support vector networks. Machine Learning, 20, pp. 273-297.
23- Vali, A., Moiri, M. and Movahediniya, N., 2009. Comparative analysis of artificial neural networks performance and suspended sediment prediction regression models. Natural Geography Research, 71, pp. 21-30. (In Persian).
24- Yin, J. and Log, P., 2011. Prediction for blocked tripe tides with amino acids descriptors (HMLP) by multiple linear regression and support vector regression”, Procedia Environmental Sciences, 8, pp. 173–178.
25- Yoon, H., Jun, S. C., Hyun, Y., Bae, G. O. and Lee, K., 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 396 (1), pp. 128-138.
26- JafariGilandeh, S., Khodaverdillo, H. and Rasulzadeh, A., 2017. Application and comparison of parametric transfer functions of Van Genuchten model in simulating unsteady water flow in cultivated soil. Soil Knowledge Journal, 25 (2), pp. 82 - 92. (In Persian).
27- Zhang, Y., 2007. Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis. Talanta, 73 (1), pp. 68-75.