1- Alderfasi, A. A. and Nielsen, D. C., 2001. Use of crop water stress index for monitoring water status and scheduling irrigation in wheat. Agricultural Water Management, 47, pp.69-75.
2- Alizadeh, A., 2010. Design of Surface Irrigation Systems. Astan Quds Razavi Publishing House. Fourth Edition, pp. 248-265. (In Persian).
3- Ballester, C., Jimenez-Bello, M.A., Castel, J.R. and Intrigliolo, D.S., 2013. Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agricultural Water Management. pp.120–129.
4- Boroomand Nasab, S., Taheri Ghanad, S. and Moayri, M., 2003. Use of green plant cover temperature to plan irrigation of spring corn in Khuzestan conditions. Scientific Journal of Agriculture, Ahvaz Agricultural College, 27, pp.56-47. (In Persian).
5- Candogan, B. K., Shncik, M., Buyukcangaz, H. and C, Demirtas., 2013. Yield, quality and crop water stress index relationships for deficit irrigated soybean [Glycine max (L.) Merr.] In sub-humid climatic conditions. Agricultural Water Management, 118, pp.113– 121.
6- Ghorbani, M., Broumand nassab, S., Mohammadi, A.S. and Minae, S., 2014. Summer Maize Irrigation Scheduling Under Surface and Sprinkler Irrigation Using CWSI in Ahvaz Climate Condition. Journal of Irrigation Science and Engineering, 38(4), pp. 63-73. (In Persian).
7- Grant, O.M., Chaves, M.M. and Jones, H.G., 2006. Optimizing thermal imaging as a technique for detecting stomatal closure induced by drought stress under greenhouse conditions. Physio logia Plant arum, 127, pp.507–518.
8- Herwitz, S. R., Johnson, L. F., Dunagan, S. E., Higgins, R. G., Sullivan, D. V., Zheng, J., Lobitz, B. M., Leung, J. G., Gallmeyer, B. A., Aoyagi, M., Slye, R. E. and Brass, J. A., 2017. Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Computers and Electronics in Agriculture, 44, pp. 49–61.
9- Idso, S.B., Jackson, R.D. and Reginato, R.J., 1977. Remote sensing of crop yields. Science 196, pp.19–25.
10- Idso, S. B., Jackson, R. D., Pinter, P. J., Reginato, R. J. and Hatfield, J. L., 1981. Normalizing the stress degree-day parameter for environmental variability. Agricultural Meteorology, 24, pp.45-55.
11- Idso, S. B., Reginato, R. J. and Radin, J.W., 1982. Leaf diffusion resistance and photosynthesis in cotton related to a foliage temperature based plant water stress index. Agricultural Meteorology, 27, pp.27-34.
12- Jackson, R.D., Idso, S.B., Reginato, R.J., and Pinter Jr, P.J., 1981. Canopy temperature as a drought stress indicator. Water Resources Research, 17, pp.1133–1138.
13- Jones, H.G., 1999. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant, Cell Environ, 22, pp.1043–1055.
14- Judy, F., 2011. Use of infrared thermometer in plantation of irrigation of sunflower plant in Khuzestan. Master's thesis, Department of Irrigation and Drainage, Faculty of Water Engineering, Shahid Chamran University of Ahvaz. (In Persian).
15- Leinonen, I. and Jones, H.G., 2004. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. Journal of Experimental Botany, 55 (401), pp.1423–1431.
16- Mangus, D.L., Sharda, A., and Zhang, N., 2016. “Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse”. Computer and Electro in Agric. 121, pp. 149–159.
17- Mohammadi, H. 2013. Irrigation plan for spring corn under drip irrigation using infrared thermometer under climatic conditions of Ahwaz. Master's thesis, Department of Irrigation and Drainage, Faculty of Water Engineering, Shahid Chamran University of Ahvaz. (In Persian).
18- Monteith, J.L. and Unsworth, M.H., 2013. Principles of Environmental Physics: Plants, Animals, and the Atmosphere, fourth ed. Elsevier Ltd, Oxford, UK.
19- Orta, A. H., Erdem, Y. and Erdem, T., 2003. Crop water stress index for Watermelon. Scientia Horticulture, 98, pp.121-130.
20- O’Shaughnessy, S. A., Evett, S. R., Colaizzi, P. D. and Howell, T. A., 2010. Automatic irrigation scheduling of grain sorghum using a CWSI and time threshold. Decennial Irrigation Association Conference, December, Michigan.
21- Rodriguez, D., Sadras, V.O., Christensen, L.K. and Belford, R., 2005. Spatial assessment of the physiological status of wheat crops as affected by water and nitrogen supply using infrared thermal imagery.
Australian Journal of Agricultural Research, 56, pp.983–993.
22- Scherrer, D., Bader, M. and Karl-Friedrich Korner, C., 2011. Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies
. Agricultural and Forest Meteorology, 151, pp.1632–1640.
23- Taghvaeian, S., Chavez, J., Altenhofen, J., Trout, T.J., and Dejonge, K.C., 2013. “Remote sensing for evaluating crop water stress at field scale using infrared thermography: potential and limitations”. Hydrology Days, pp.73–83.
24- Verdiynezhad, S., Sohrabi, T. and Layyat A., 2007. Programming of corn irrigation in different growth stages using the difference in temperature of green plant cover. The 9th National Irrigation Seminar and Reduction of Evapotranspiration, February. (In Persian).
25- Zia, S., Romano, G., Spreer, W., Sanchez, C., Cairns, J., Araus, J. L. and Müller, J., 2012. Infrared thermal imaging as a rapid tool for identifying water stress tolerant maize genotypes of different phenology. Journal of Agronomy and Crop Science 199(2), pp. 75–84.