1- Abbasi, F., Adamsen, F.J., Hunsaker, D.J., Feyen, J., Shouse, P. and Van Genuchten, M.T. 2003. Effects of flow depth on water flow and solute transport in furrow irrigation: Field data analysis. Journal of Irrigation and Drainage Engineering, 129(4), pp. 237-246.
2- Bala, N., Singh, G., Bohra, N.K., Limba, N.K. and Baloch, S.R. 2014. Bio drainage for Restoration of Canal Command Waterlogged Area in Indian Desert. Indian Forester, 140(5), pp. 462-467.
3- Bautista, E., Warrick, A.W. and Strelkoff, T.S. 2014. New results for an approximate method for calculating two-dimensional furrow infiltration. Journal of Irrigation and Drainage Engineering, 140(10), pp. 04014032.
4- Ebrahimian, H. 2014. Soil infiltration characteristics in alternate and conventional furrow irrigation using different estimation methods. KSCE Journal of Civil Engineering, 18(6), pp. 1904-1911.
5- Elliot, R.L. and Walker, W. 1982. Field evaluation on furrow infiltration and advance functions. Transaction of the ASAE, 25(2), pp. 396–400.
6- Fangmeier, D.D. and Ramsey, K.K. 1978. Intake characteristics of irrigation furrows. ASAE, 21(4), pp. 696–700.
7- Furman, A., Warrick, A.W., Zerihun, D. and Sanchez, C.A. 2006. Modified Kostiakov infiltration function: Accounting for initial and boundary conditions. Journal of Irrigation and Drainage Engineering, 132(6), pp. 587-596.
8- Govers, G., Takken, I. and Helming, K. 2000. Soil roughness and overland flow. Agronomie, 20(2), pp. 131-146.
9- Gregory, J.H., Dukes, M.D., Jones, P.H. and Miller, G.L. 2006. Effect of urban soil compaction on infiltration rate. Journal of Soil and Water Conservation, 61(3), pp. 117-124.
10- Hamilton, G., Akbar, G., Hassan, I., Raine, S., McHugh, A., Fisher, P. and Sheppard, J. 2014. Management to improve soil productivity and maximise lateral infiltration in permanent bed-furrow irrigation systems. In Proceedings of the National Soil Science Conference Soil Science Australia.
11- Hartge, K.H., Horn, R., Horton, R., Bachmann, J. and Peth, S. 2016. Essential Soil Physics. Schweizerbart science publishers. Germany.
12- Hills, R.C. 1970. The determination of the infiltration capacity of field soils using the cylinder infiltrometer. Technical Bulletin, British Geomorphological Research Group.
13- Izadi, B. and Wallender, W.W. 1985. Furrow hydraulic characteristics and infiltration. ASAE, 28(6), pp. 1901-1908.
14- Karmeli, D., Salazar, L. and Walker, W. 1978. Assessing the spatial variability of irrigation water application. Office of Research and Development US Environmental Protection Agency, Oklahoma, USA.
15- Miao, Q., Rosa, R.D., Shi, H., Paredes, P., Zhu, L., Dai, J. and Pereira, L. S. 2016. Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach. Agricultural Water Management, 165, pp. 211-229.
16- Oyonarte, N.A., Mateos, L. and Palomo, M.J. 2002. Infiltration variability in furrow irrigation. Journal of Irrigation and Drainage Engineering, 128(1), pp. 26-33.
17- Philip, J.R. 1957. The theory of infiltration: 5. the influence of the initial moisture content. Soil Science, 84(4), pp. 329–339.
18- Philip, J.R. 1969. Theory of infiltration. Advance Hydroscience, 5, pp. 215–305.
19- Skonard, C.J. 2002. A field-scale furrow irrigation model. PhD dissertation, University of Nebraska-Lincoln, Lincoln, USA.
20- Sloan, B.P., Basu, N.B. and Mantilla, R. 2016. Hydrologic impacts of subsurface drainage at the field scale: Climate, landscape and anthropogenic controls. Agricultural Water Management, 165, pp. 1-10.
21- Souza, F. 1981. Nonlinear hydrodynamic model of furrow irrigation. PhD dissertation, University of California, Davis, California.
22- Valiantzas, J.D., Pollalis, E.D., Soulis, K.X. and Londra, P.A. 2009. Modified form of the extended Kostiakov equation including various initial and boundary conditions. Journal of Irrigation and Drainage Engineering, 135(4), pp. 450-458.
23- Vogel, T. and Hopmans, J.W. 1992. Two-dimensional analysis of furrow infiltration. Journal of Irrigation and Drainage Engineering, 118(5), pp. 791-806.
24- Walker, W.R. and Kasilingam, B. 2004. Another look at wetted perimeter along irrigated furrows—modeling implications. World Water and Environmental Resources Congress: ASCE/EWRI Salt Lake City, UT.
25- Walker, W.R. and Skogerboe, G.V. 1987. Surface Irrigation Theory and Practice. Prentice-Hall, Englewood Cliffs, New Jersey. USA.
26- Wallender, W.W. and Rayej, M. 1990. Shooting method for Saint Venant equations of furrow irrigation. Journal of Irrigation and Drainage Engineering, 116(1), pp. 114–122.
27- Yonts, C.D., Eisenhauer, D.E. and Varner, D.L. 2003. Managing furrow irrigation systems. Cooperative Extension, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln.
28- Zerihun, D., Feyen, J. and Reddy, J.M. 1996. Sensitivity analysis of furrow-irrigation performance parameters. Journal of Irrigation and Drainage Engineering, 122(1), pp. 49–57.