1- Aklonis, J.J., MacKnight, W.J. and Shen, M., 1972. Introduction to Polymer Viscoelasticity.Wiley-IntersWiley-Interscience- John Wiley & Sons, Inc. New York.
2- Brunone, B., Golia, U.M. and Greco, M., 1991. Modelling of fast transients by numerical methods. In International Conference on Hydraulic Transients with Water Column Separation (9th and last round Table of IAHR Group), Valencia, Spain.
3- Brunone, B., Golia, U.M. and Greco, M., 1995. Effects of two-dimensionality on pipe transients modeling. Journal of Hydraulic Engineering, 121(12), pp.906-912.
4- Chaudhry, M.H., 1987. Applied hydraulic transients, 2nd Ed., Van Nostrand Reinhold, New York.
5- Covas, D., 2003. Inverse transient analysis for leak detection and calibration of water pipe systems modelling special dynamic effects, Thesis, Imperial College of Science, Technology and Medicine, University of London, London, UK. 322p.
6- Covas, D., Stoianov, I., Mano, J., Ramos, H., Graham, N. and Maksimovic, C., 2004. The dynamic effect of pipe-wall viscoelasticity in hydraulic transients, Part I—Experimental analysis and creep characterization. Journal of Hydraulic Research, IAHR. 42(5), pp.516-530.
7- Covas, D., Stoianov, I., Mano, J., Ramos, H., Graham, N. and Maksimovic, C., 2005. The dynamic effect of pipe-wall viscoelasticity in hydraulic transients, Part II—Model development, calibration and verification. Journal of Hydraulic Research, IAHR. 43(1), pp.56-70.
8- Carriço, N.J., Soares, A.K. and Covas, D.I.C. 2016. Uncertainties of inverse transient modelling with unsteady friction and pipe-wall viscoelasticity. Journal of Water Supply: Research and Technology-AQUA, 65(4), pp.342-353.
9- Daily, J.W., Hankey, Jr.W.L., Olive, R.W. and Jordan, Jr.J.M., 1956. Resistance coefficients for accelerated and decelerated flows through smooth tubes and orifices. Journal of Basic Engineering, Trans. ASME. 78(7), pp.1071-1077.
10- Evangelista, S., Leopardi, A., Pignatelli, R. and de Marinis, G., 2015. Hydraulic transients in viscoelastic branched pipelines. Journal of Hydraulic Engineering, ASCE, 141(8), pp.1-9.
11- Joukowski, N.E., 1904. Waterhammer (Mem. Imperial Academy Soc. of St. Petersburg, 1898) (In Russian. translaled by O. Simin). In the 24th Annual Convention of the American Water Works Association.
12- Pezzinga, G., 1999. Quasi-2D model for unsteady flow in pipe networks. Journal of Hydraulic Engineering, ASCE, 125(7), pp.676-685.
13- Rahmanshahi, M., Fathi-Moghaddam, M. and Haghighi, A., 2019. Numerical simulation of dynamic phenomena of unsteady friction and viscoelastic effects in pipeline under the transient flow. Irrigation Sciences and Engineering, 41(4), pp.201-216. (In Persian).
14- Soares, A.K., Covas, D. and Reis, F.R., 2008. Analysis of PVC pipe-wall viscoelasticity during water hammer. Journal of Hydraulic Engineering, ASCE, 134(9), pp.1389-1394.
15- Trikha, A.K., 1975. An efficient method for simulating frequency-dependent friction in transient liquid flow. Journal of Fluids Engineering, Trans. ASME, 97(1), pp.97-105.
16- Vitkovsky, J.P., Lambert, M.F. and Simpson, A.R., 2000. Advances in unsteady friction modelling in transient pipe flow. In the 8th International Conference on Pressure Surges. BHR Group Ltd., The Hague, The Netherlands.
17- Zielke, W., 1968. Frequency-dependent friction in transient pipe flow. Journal of Basic Engineering, Trans. ASME. Series D. 90(1), pp.109-115.