Optimization of Nonlinear Parameters of Muskingum NL5 model With SHO algorithm

Document Type : Research Paper


1 Ph. D. Candidate in Water Science and Engineering, Ferdowsi University of Mashhad, Iran.

2 PhD Student in Water Sciences and Engineering- Water Structures, Bu-Ali Sina University, Hamedan, Iran.

3 Assistant, Associate Professor in Water Science and Engineering Department and Member of Water and Environmental Research Institute, Ferdowsi University of Mashhad, Iran

4 Professor in Water Science and Engineering Department and Member of Water and Environmental Research Institute Ferdowsi University of Mashhad, Iran.


The Muskingum method was first developed by U.S. Army engineers to study flood control in the Muskingum River Basin in Ohio. To evaluate the performance of the SHO algorithm, the results of its implementation have been compared with other basic algorithms such as GA and ICA. The coding of SHO, GA and ICA algorithms was done in the MATLAB (R2018b) software programming section. The results showed that the statistical parameters obtained for the river studied by SHO algorithm in two nonlinear models of Muskingum indicate the proper performance of these algorithms in estimating the optimal values ​​of nonlinear masking modeling parameters in flood detection compared to other algorithms.


Main Subjects

  • Ahmed, A. N., Othman, F. B., Afan, H. A., Ibrahim, R. K., Fai, C. M., Hossain, M. S., Ehtteram, M., and Elshafie, A., 2019. Machine learning methods for better water quality prediction. Journal of Hydrology, 578.pp. 124084.


  • Akbarifard, S., Madadi, M. R., and Aliannejad, M., 2017. Parameters estimation of the nonlinear Muskingum flood-routing model using wolf search algorithm (WSA) (Case Study: Kardeh River). Irrigation and Drainage Structures Engineering Research. 17.(67),pp. 95-112.


  • Barati, R., Akbari, G., and Fadafan, M. 2010. Presentation an algorithm for estimating parameters of nonlinear Muskingum method. 9th Conference of Iran Hydraulic, Tehran (in Persian).


  • Barati, R., Badfar M., Azizyan, G., Akbari, GH., 2017. Discussion of parameter estimation of extended nonlinear Muskingum models with the weed optimization algorithm by Farzan Hamedi, Omid Bozorg-Haddad, Maryam Pazoki, Hamid-Reza Asgari, Mehran Parsa, and Hugo a. Loáiciga. Journal of Irrigation and Drainage Engineering 144.(1).pp. 7001-7021.


  • Bozorg Haddad, O., Hamedi, F., Orouji, H., Pazoki, M., Loáiciga, H.A., 2015. A re-parameterized and improved nonlinear muskingum model for flood routing. Water Resources Management 29.(9),pp. 3419- 3440.


  • Cheng, M.y., and Prayogo, D., 2014. Symbiotic organisms search: A new metaheuristic optimization algorithm. Journal of Computers & Structures. 139.pp. 98-112.


  • Chow, V. T. 1973. Open Channel Hydraulics. 3rd Ed. McGraw Hill Book Company. New York. Inc.


  • Chu, H.J., and Chang, L.C., 2009. Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. Journal of Hydrologic Engineering, 14(9). 1024-1027.


  • Cunge, J.A., Holly, F.M., and Verwey, A., 1980. Practical aspects of computational river hydraulics. Pitman Publishing Limited, London.


  • Dhiman, G., and Kumar, V., 2017. Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114(Supplement C). 48-70.


  • Easa, SM ., 2013. New and improved four parameter nonlinear Muskingum model. Proceedings of the Institution of Civil Engineering-Water Management 167(5), pp.288–298.


  • Farzin, S., Singh, V.P., Karami, H., Farahani, N., Ehteram, M., Kisi, O., Allawi, M.F., Mohd, N.S. and El-Shafie, A., 2018. Flood routing in river reaches using a three-parameter Muskingum model coupled with an improved bat algorithm. Water, 10(9), pp.11-30.


  • Geem, Z.W., 2006. Parameter estimation for the nonlinear Muskingum model using the BFGS technigue. Journal of Irrigation and Drainage Engineering, 5, pp.474-478.


  • Ghaleni, M., Bozorg Haddad, O., and Ebrahimi, K., 2010. Optimization nonlinear Muskingum model’s parameters by simulated optimization Nord algorithm. Journal of Water and Soil, 24.pp.908-919.(in Persian).


  • Gill, M. A., 1978. Flood routing by Muskingum method. Journal of Hydrology, 36, pp.353-363


  • Karahan, H., Gurarslan, G., and Geem, Z.W., 2013. Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm. Journal of Hydrologic Engineering, 18(3), pp.352-360.


  • Khalifeh, S., Esmaili, K., Khodashenas, S., and Akbarifard, S., 2020a. Data on optimization of the non-linear Muskingum flood routing in Kardeh river using Goa algorithm. Data in Brief, 30, pp.105398-105405
  • Khalifeh, S., Esmaili, S. A., Esmaili, K., and Khodashenas, S., 2020b. Comparison application of the symbiotic organisms search algorithm with meta heuristic algorithms in flood routing model. Journal of Water and Soil, 34(2), pp.365-378 (in Persian).


  • Kim J. H., Geem. Z.W., and Kim. E.S., 2001. Parameter estimation of the nonlinear Muskingum model using harmony search. Journal of the American Water Resources Association, 37, pp.1131-1138.


  • Mohan, S., 1997. Parameter estimation of nonlinear Muskingum models using genetic algorithm. Journal of Hydraulic Engineering, 123.pp.137–142.


  • Premual, M. and RangaRaju, K.G., 1998. Variable – parameter stage – hydrograph routing method: I Theory. Journal of Hydrologic Engineering, 3(2), pp.115-121.


  • Samani, H., and Shamsipour, G., 2003. Flood routing by nonlinear optimization. Journal of Hydraulic Research, 42, pp.55-59 (in Persian).


  • Wilson, E. M., 1974. Engineering hydrology, Springer.


  • Vafakhah, M., Dastorani, A., and Moghaddam Nia, A., 2005. Optimal Parameter Estimation for Nonlinear Muskingum Model based on Artificial Bee Colony Algorithm. ECOPERSIA, 3(1), pp.847-865.


  • Xu, D. M., Qiu, L., and Chen, S.Y., 2011. Estimation of nonlinear Muskingum model parameter using differential evolution. Journal of Hydrologic Engineering, 17(2), pp.348-353
Volume 45, Issue 3
December 2022
Pages 113-129
  • Receive Date: 01 July 2020
  • Revise Date: 07 January 2021
  • Accept Date: 09 January 2021
  • Publish Date: 23 October 2022