Document Type : Research Paper
Authors
1
PhD student in irrigation and Drainage, Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
2
Faculty of Agriculture, Professor, Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3
Faculty of Agriculture, Associate Professor, Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
4
Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida 32611–0570, US.
Abstract
Climate change means any specific change in the long-term average weather state that occurs for a given location or for the entire globe (Goudarzi and Koupaei, 2020). Climate change is one of the most critical factors threatening food security, and it is expected to make food and nutrition security more challenging in the future (Carpena et al., 2019). It will affect the agricultural sector by changing the irrigation water requirements, crop yield, and water productivity (Boonwichai et al., 2018; Liu et al., 2019). Rice is the third most important crop in the world, following wheat and maize (Kapela et al., 2020). The occurrence of water shortages and droughts have raised concerns about the sustainability of rice production, including the main rice cultivation production region of Mazandaran in Iran (Yosefian 2018). Most studies have reported that rice production will decrease in the future due to a projected increase in temperature and a projected decrease in precipitation) Basak et al. 2010; Boonwichai et al. 2018; Nasir et al. 2020; Nicolas et al. 2020). Although many farmers, particularly in Iran, feel that permanent flooding conditions for rice farming are inevitable, climate change forces the use of water-saving technologies to ensure the long-term viability of irrigated rice production in paddy fields (Yosefian 2018; Mirfenderski 2022). Accordingly, it is necessary to find new methods for rice cultivation that reduce water use and make optimal use of the available water for irrigation while maintaining yield under climate change. The goal of this study was to examine the water requirement, water productivity, and risk of rice yield for different irrigation levels under various climate change scenarios using a crop simulation model.
Keywords
Main Subjects