Estimate The Amount of Climate Change Effects on Rainfall-Runoff if Sufi-Chi Basin

Document Type : Research Paper



Nowaday, the impact of global warming and climate change because of the increased effects of greenhouse gases in the atmosphere has been observed in many natural systems. All the general circulation models of the atmosphere predict warmer future for the earth. Hydrological processes such as rainfall and river flows as one of the main sources of water supply basins could be affected in such circumstances. Due to the low spatial resolution or simplification of some micro-scale phenomena in atmospheric general circulation models, these models cannot be employed for accurate approximation of the climate of the considered area, therefore, their output must be down scaled to the meteorological station range. In this study, the data of HadCM3 general circulation model down scaling with the use of LARS-WG model under two scenarios A2 and A1B and Parameters of daily rainfall, minimum temperature and maximum temperature of the Sufi-Chi basin generated for three periods (2011-203, 2046-2065-, 2080-2099). To assess the effect of climate change on runoff is used from artificial neural networks and genetic programming of intelligent model. The results indicate that the rainfall will increase in 2011-2030 and will decrease in the further future. Also the maximum and minimum temperatures will gradual increase in three periods of future and the amount of runoff will decrease in future than current time.


1-    اشرف، ب.، موسوی بایگی، م.، کمالی، غ. و ک. داوری. 1390. پیش بینی تغییرات فصلی پارامترهای اقلیمی در 20 سال آتی با استفاده از ریز مقیاس نمایی آماری داده های مدل HadCM3 (مطالعه موردی: استان خراسان رضوی). نشریه آب و خاک (علوم و صنایع کشاورزی)، 25 (4):  952-940.
2-    عباسی، ف.، ملبوسی، ش.، بابائیان، ا.، اثمری، م. و ر. برهانی. 1389. پیش بینی تغییرات اقلیمی خراسان جنوبی در دوره 2039-2010 میلادی با استفاده از ریز مقیاس نمایی آماری خروجی مدل ECHO-G. نشریه آب و خاک (علوم و صنایع کشاورزی). 2 (24): 233-218.
3-    Abdo, K.S., Fiseha, B.M., Rientjes, T.H.M., Gieske, A.S.M. and A.T. Haile. 2009. Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in lake Tana Basin. Ethiopia. Hydrological Processes, 23(26): 3661-3669.
4-    Ferreira, C. 2001. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems, 13(2): 87-129.
5-    Guven, A. 2009. Linear genetic programming for time-series modeling of daily flow rate. Journal of Earth System Science, 118(2): 157-173.
6-    Hashmi, M.Z., Shamseldin, A.Y. and B.W. Melville. 2010. Comparison of  SDSM and LARS-WG for simulation and down scaling of extreme precipitation events in a watershed. Stochastic Enviromental Research and Risk Assessment, 25: 475-484.
7-    Johnson, G.L., Hanson, C.L., Hardegree, S.P. and E.B. Ballard. 1996. Stochastic weather simulation: over view and analysis of two Commonly used model. Journal of Applied meteorology, 35: 1878-1896.
8-    Kisi, O., Shiri, J. and M. Tombul. 2012. Modeling rainfall – runoff process using soft computing techniques. Computers & Geosciences, 23:412-422.
9-    Koza, J.R. 1992. Genetic programming on the programming of computers by means of natural selection. MIT Press, Cambridge.
10- Mitchell, T.D. 2003. Pattern scaling : An examination of accuracy of the technique for describing future climates. Climate Change, 60:217-242.
11- Semenov, M.A. and E.M. Barrow. 2002. LARS-WG a stochastic weather generator for use in climate impact studies. User’s manual, Version 3.0.
12- Souvignet, M., Gaese, H., Ribbe, L., Kretschmer, N. and R. Oyarzun. 2010. Statistical downscaling of precipitation and temperature in north-central Chile: an assessment of possible climate change impacts in an arid Andean watershed. Hydrological Sciences Journal, 55(1): 41-57.
13- Wilby, L.R., Hay, L.E. and G.H. Leavesley. 1998. A comparison of downscaled and raw GCM output: Implications for climate change scenarios in the San Juan River Basin, Colorado. Journal of Hydrology, 225: 67-91.
14- Wilby, R.L. and I. Harris. 2006. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resources Research, 42(2): 1-10.
15- Yu HH and N.H. Jenq. 2002.  Handbook of Neural Network Signal Processing. CRC Press.
16- Zarghami, M., Hassanzadeh, Y., Babaeian, I. and R. Kanani. 2009. Climate change and water resources vulnerability; Case study of Tabriz City. In SENSE symposium on climate proofing cities (1).‏
Volume 40, Issue 2
September 2017
Pages 89-101
  • Receive Date: 07 January 2015
  • Revise Date: 24 September 2017
  • Accept Date: 24 January 2016
  • Publish Date: 23 August 2017