Document Type : Research Paper
Author
Associate Professor, Department of Civil Engineering, Jundi-Shapur University of Technology, Dezful,
Abstract
Keywords
Main Subjects
2- Ardiçlioǧlu, M., Sekçin, G., and Yurtal, R. 2006. Shear stress distributions along the cross section in smooth and rough open channel flows. Kuwait Journal of Science and Engineering, 33(1), 155–168.
3- Basak, D., Pal, S., and Patranabis, D. C. (2007). Support vector regression. Neural Information Processing. Vol. 11(10, 203–224.
4- Chiu, C.L., 1987. Entropy and probability concepts in hydraulics. Journal of Hydraulic Engineering, 113(5), pp.583-599.. doi: 10.1061/(asce)0733-9429(1987)113:5(583)
5- Chiu, C.L., 1991. Application of entropy concept in open-channel flow study. Journal of hydraulic engineering, 117(5), pp.615-628. doi:10.1061/(asce)0733-9429(1991)117:5(615)
6- Cobaner, M., Seckin, G.A.L.İ.P., Seckin, N.E.S.L.İ.H.A.N. and Yurtal, R.E.C.E.P., 2010. Boundary shear stress analysis in smooth rectangular channels and ducts using neural networks. Water and Environment Journal, 24(2), pp.133-139. doi: 10.1111/j.1747-6593.2009.00165.x
7- Ebrahimi, H. and Rajaee, T., 2017. Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Global and Planetary Change, 148, pp.181-191. doi:10.1016/j.gloplacha.2016.11.014.
8- Kartha, V.C. and Leutheusser, H.J., 1970. Distribution of tractive force in open channels. Journal of the Hydraulics Division, 96(7), pp.1469-1483. doi:10.1061/jyceaj.0002562.
9- Knight, D.W. and Patel, H.S., 1985a. Boundary shear in smooth rectangular ducts. Journal of Hydraulic Engineering, 111(1), pp.29-47.doi:10.1061/(asce)0733-9429(1985)111:1(29).
10- Knight, D.W. and Patel, H.S., 1985b, September. Boundary shear stress distributions in rectangular duct flow. In Proc. 2nd Int. Symposium on Refined Flow Modelling and Turbulence Measurements pp. 122-1.
11- Knight, D. W., Yuen, K. W. H., and Al-Hamid, A. A. I. 1994. Boundary shear stress distributions in open channel flow. Mixing and Transport in the Environment, 51–87.
12- Lashkar-Ara, B. and Fatahi, M., 2020. On the measurement of transverse shear stress in a rectangular open channel using an optimal Preston tube. Scientia Iranica, 27(1), pp.57-67. doi: 10.24200/sci.2018.20209.
13- Lashkar-Ara, B., Kalantari, N., Sheikh Khozani, Z. and Mosavi, A., 2021. Assessing machine learning versus a mathematical model to estimate the transverse shear stress distribution in a rectangular channel. Mathematics, 9(6), p.596. doi:10.3390/math9060596.
14- McCuen, R.H., Knight, Z. and Cutter, A.G., 2006. Evaluation of the Nash–Sutcliffe efficiency index. Journal of hydrologic engineering, 11(6), pp.597-602. doi: 10.1061/(asce)1084-0699(2006)11:6(597)
15- Sheikh, Z. and Bonakdari, H., 2016. Prediction of boundary shear stress in circular and trapezoidal channels with entropy concept. Urban Water Journal, 13(6), pp.629-636. doi:10.1080/1573062X.2015.1011672.
16- Khozani, Z.S. and Bonakdari, H., 2018. Formulating the shear stress distribution in circular open channels based on the Renyi entropy. Physica A: Statistical Mechanics and its Applications, 490, pp.114-126. doi:10.1016/j.physa.2017.08.023.
17- Khozani, Z.S., Bonakdari, H. and Zaji, A.H., 2018. Estimating shear stress in a rectangular channel with rough boundaries using an optimized SVM method. Neural Computing and Applications, 30, pp.2555-2567. doi:10.1007/s00521-016-2792-8.
18- Cao, S. and Knight, D.W., 1996. Shannon's entropy-based bank profile equation of threshold channels. In Stochastic hydraulics’ 96, proceedings of the 7th IAHR international symposium on stochastic hydraulics, Central Queensland University, Australia, July. Balkema, Rotterdam. pp: 169-175.
19- Sterling, M. and Knight, D., 2002. An attempt at using the entropy approach to predict the transverse distribution of boundary shear stress in open channel flow. Stochastic Environmental Research and Risk Assessment, 16, pp.127-142. doi: 10.1007/s00477-002-0088-2.
20- Suryanarayana, C., Sudheer, C., Mahammood, V. and Panigrahi, B.K., 2014. An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing, 145, pp.324-335. doi:10.1016/j.neucom.2014.05.026.
21- Vapnik, V. N. 1998. Statistical learning theory. John Wiley and Sons, New York.
22- Willmott, C.J. and Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate research, 30(1), pp.79-82.//www.ottokinne.de/articles/cr2005/30/c030p079.pdf
23- Yang SQ, Lim SY. Mechanism of energy transportation and turbulent flow in a 3D channel. Journal of Hydraulic Engineering. 1997 Aug;123(8):684-92. doi: 10.1061/(asce)0733-9429(1997)123:8(684)