Effect of Coastal Forest on Solitary Breaking Waves Force Absorption in Sloping Coasts

Document Type : Research Paper


1 Student / Shahid Chamran University of Ahvaz

2 chamran university of ahwaz


Every year, natural disasters and catastrophes such as hurricanes and tsunamis cause coasts destruction and bring irreparable damages to the life and properties of people. Recent approaches of coastal protection are based on environmental balance and stabilization. the new method of coastal protection is planting coastal forest lines known as green belt. Coastal green belt confronting toward coastal protection and damage reduction is through increasing the resistance to incoming wave to the coast and absorbing part of its force. Hence, the aim of present study is to investigate the effect of coastal vegetation density on variations of destructive solitary breaking waves force and drag coefficient of coastal forest. To this purpose, a sloping coast and a coastal vegetation model were installed in a flume equipped with a frictionless force measurement system. The experiments were conducted in four different coast slopes in both with coastal vegetation and without coastal vegetation model (three coastal vegetation density). The results indicated that the presence of coastal green belt reduce the destructive force of the waves to about 60 percent on average.


1-    بی­نام. 1392. راهنمای طراحی و اجرای سازه‌ای حفاظت سواحل. استاندارد مهندسی سواحل، نشریه شماره 629.
2-    چگینی، و. 1377. راهنمای طراحی موجشکن‌ها. انتشارات شرکت جهاد تحقیقات آب و آبخیزداری. تهران، ایران.
3-    قنبری عدیوی، ا. و م. فتحی‌مقدم. 1393. مروری بر تحقیقات استهلاک و میرایی امواج دریا از طریق پوشش گیاهی ساحلی. فصلنامه علوم و فناوری دریا، 70(1): 69-54.
4-    لشکرآرا، ب. 1388. تعیین تنش برشی در کانال‌های مستطیلی با استفاده از روش های ممنتم و انرژی. رساله دکتری، رشته مهندسی کشاورزی- سازه­های آبی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
5-    Anderson, M., McKee Smith, J. and S. Kyle McKay. 2011. Wave dissipation by vegetation. ERDC/CHL CHETN-I-82.
6-    Bernard, E. N., Mofjeld, H. O., Titov, V., Synolakis, C.E. and F. I. Gonzalez. 2006. Tsunami: Scientific frontiers, mitigation, forecasting and policy implications. Philosophical Transaction of the Royal Society, A-364, 1989-2007.
7-    Dalrymple, R. A., Kirby, J.T. and P.A. Hwang. 1984. Wave diffraction due to areas of energy dissipation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 110(1): 67-79.
8-    Dean, R. G. and R. A. Dalrymple. 1991. Water wave mechanics for engineers and scientist. Advanced series on ocean enginnring,Vol. 2, World Scientific Publishing, Singapore.
9-    Fathi-Moghadam, M. 1996. Momentum absorption in non- rigid, non- submerged, tall vegetation along rivers. University of Waterloo, Canada, Ph.D. Thesis.
10- Grant, P. F. and W. G. Nickling. 1998. Direct field measurement of wind drag on vegetation for application to windbreak design and modeling. Land Degradation and Development, 9(1):57–66.
11- Harada, K. and F. Imamura. 2006. Experimental study on the resistance by mangrove under unsteady flow. Proceeding Congress. Asian and Pacific Coastal Engineering Dalia, Pp. 975-984.
12- Hirashi, T. and Harada, K. (2003). Green belt tsunami prevention in South-Pacific region. Port and Airport Research Institute, 42(2), 23p.
13- Husrin, S., Strusinska, A. and H. Oumeraci. 2012. Experimental study on tsunami attenuation by mangrove forest. Earth Planets Space Journal, 64: 973- 989.
14- Iida, K. 1969. The generation of tsunamis and the focal mechanism of earthquakes, tsunamis in pacific ocean (W.M. Adams, Editor). East-West Center Press, University of Hawaii, Pp. 3-18.
15- Kouwen, N. and M. Fathi-Moghadam. 2000. Friction factors for coniferous trees along rivers. Journal of Hydraulic Engineering, 126(10):732–740.
16- Mascarenhas, A. and S. Jayakumar. 2008. An environmental perspective of the post tsunami scenario along the coast of Tamil Nadu. India. Role of sand dunes and forests. Journal of Environmental Management, 89(1): 24–34.
17- Mayhead, G. J. 1973. Some drag coefficients for British forest trees derived from wind tunnel studies. Journal of Agricultural Meteorology, 12:123–130.
18- Méndez, F. J. and I. J. Losada. 2004. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coastal Engineering, 51(2): 103-118.
19- Mokhtari, M. and N. Hajizadeh Zaker. 2005. Makran (Sea of Oman) a tsunami prone area for iranian coasts. 6th A/O Regional Meeting of IAPH, 1-4 Feb, Tehran, Iran.
20- Roudbaraky, H. J., Baker, C. J., Dawson, A. R. and C. J. Wright. 1994. Experimental observations of the aerodynamic characteristics of urban trees. Journal of Wind Engineering and Industrial Aerodynamics, 52:171–184.
21- Russell, J. S. 1845. Reports on waves made to the meetings of the British Association in 1842-43, London.
22- Sorensen, R. M. 2006. Basic coastal engineering 3rd Edition. Springer Science, New York.
23- Wiegel, R. L. 1970. Tsunamis, earthquakes engineering (R.L. Wiegel, Editor). Prentice Hall, Englewood Cliffs, NJ. 253-306.
Volume 40, Issue 2
September 2017
Pages 251-263
  • Receive Date: 30 June 2016
  • Revise Date: 25 September 2017
  • Accept Date: 17 October 2016
  • First Publish Date: 23 August 2017