مشخصات پرش هیدرولیکی روی بستر با المان‌های شش‌پایه نفوذپذیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سازه‌های آبی، دانشگاه شهید چمران اهواز

2 عضو هیئت علمی دانشگاه شهید چمران اهواز

چکیده

حوضچه‌ی آرامش یکی از انواع سازه‌های مستهلک‌کننده انرژی در سیستم‌های انتقال آب است که ابعاد آن به مشخصات پرش بستگی دارد. در تحقیق حاضراز المان‌های شش‌پایه در نفوذپذیری‌های مختلف در بستر حوضچه استفاده و تغییرات تنش برشی بستر، عمق مزدوج و طول پرش بررسی شده‌است. آزمایش‌ها در فلومی به طول5/7 متر و عرض 3/0 متر انجام گردید و المان‌های شش‌پایه روی کف فلوم با سه درصد تراکم 36، 63 و 100 درصد به نحوی چیده شدند که سطح فوقانی آن‌ها در زیر جت ورودی آب قرار بگیرد و مشخصات پرش هیدرولیکی نوع A و پروفیل سطح آب در محدوده‌ی اعداد فرود 3/5 تا 1/8 برداشت شود. نتایج نشان داد که بیشترین کاهش عمق مزدوج و طول پرش در شرایطی می‌باشدکه تراکم المان‌ها 36 درصد است. در این مطالعه روابطی برای تعیین اعماق مزدوج و ضریب نیروی برشی بستر بر اساس عدد فرود برای المان‌های شش‌پایه ارائه گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Characteristics of Hydraulic Jump on The Bed with Permeable Six Legs Elements

نویسندگان [English]

  • Maryam Khajeh Goodari 1
  • mahmood shafai bajestan 2
چکیده [English]

Stilling basin is one of the dissipated energy structures in water transfer systems that its dimensions depend on the characteristics of hydraulic jump.In present study, six legs elements have been used in different permeability on basin bed and the changes of shear stress, sequent depth and the length of jump have been investigated. Experiments were conducted in a rectangular flume of 7.5 m long and 0.3 m wide and six legs elements were arranged on the bed of flume with density percent 36, 63 and 100 in such a way that the incoming water jet was just above the elements surface. The incoming Froude number was in the range of 5.3 to 8.1 and during each test the water surface profile and characteristics of hydraulic jump type A were measured. The results indicate that the most reduction of sequent depth ratio and dimensionless length of jump occur when the density of elements is 36%. In this study, relations have been presented for the sequent depth of hydraulic jump and shear force coefficient of bed as a function of the Froude Number for six legs elements.

کلیدواژه‌ها [English]

  • Dissipated energy
  • Stilling basin
  • Hydraulic jump
1-    راور، ز.، فرهودی، ج. و ه. نژندعلی. 1391. تاثیر بستر ذوزنقه‌ای قائم بر خصوصیات پرش هیدرولیکی و استهلاک انرژی. نشریه آب و خاک علوم و صنایع کشاورزی، 26(1) : 94-85.
 
2-    شفاعی بجستان، م. و ک. نیسی. 1388. بررسی عمق مزدوج پرش هیدرولیکی تحت تاثیر اجزای زبر کف. مجله دانش آب و خاک، 1(19) : 176-165.
 
3-    نصر اصفهانی، م. و م. شفاعی بجستان. 1393. بررسی پدیده کاویتاسیون در حوضچه آرامش با بستر زبر و پله ناگهانی. نشریه علمی پژوهشی هیدرولیک، 8(2) : 40-29.
4-    Abbaspour, A., Hosseinzadeh Dalir, A., Farsadizadeh D. and A. A. Sadraddini. 2009. Effect of sinusoidal corrugated bedon hydraulic jump characteristics. Journal of Hydro-Environmental Research, 3: 109-117.
 
5-    AboulAtta, N., Ezizah, G., Yousif, N. and S. Fathy. 2011. Design of stilling basin artificial roughness. International Journal Civil and Environmental Engineering, 3(2): 65-71.
 
6-    Ali Ahmed, H. M., El Gendy, M., Hasan Mirdan, A. M., Mohamed Ali, A. A. and S. F. Abdel Haleem. 2014. Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Engineering Journal,  5(4): 1033–1042.
 
7-    Alhamid, A. A. 1994. Effective roughness on horizontal rectangular stilling basins. Transaction on Ecology and The Environment, 8: 39-46.
 
8-    Ead, S.A. 2007. Effect of bed corrugations on the characteristics of a hydraulic jump. Final Research Report 14/427, King Saud University, College of Engineering, Research Center.
 
9-    Ead, S.A. and N. Rajaratnam. 2002. Hydraulic jumps on corrugated beds. Journal of Hydraulic Engineering, ASCE, 128 (7): 656-663.
 
10- Elsebaie, I.H. and Sh. Shabayek. 2010. Formation of hydraulic jumps on corrugated beds. Civil and Environmental Engineering, 10(1): 40-50.
 
11- Gohari, A. and J. Farhoudi. 2009. The characteristics of hydraulic jump on rough bed stilling basins. 33rd IAHR Congress, Water Engineering for A Sustainable Environment, Vancouver, British Columbia, August 9-14.
 
12- Hager, W. H. 1992. Energy dissipaters and hydraulic jump. Kluwer Academic, Dordrecht,Netherland.
 
13- Izadjoo, F. and M. Shafai-Bajestan. 2007. Corrugated bed hydraulic jump stilling basin. Journal of Applied Sciences 7(8): 1164-1169.
 
14- Mohammad Ali, H. S. 1991. Effect of roughened-bed stilling basin on length of rectangular hydraulic jumps. Journal of Hydraulic Engineering, ASCE, 117(1): 83-93.
 
15- Peterka, A.J. 1958. Hydraulic design of stilling basins and energy dissipaters. Engineering Monograph No. 25, USBR, Denver, Colorado, USA.
 
16- Rajaratnam, N. 1968. Hydraulic Jump on rough bed. Transaction of the Engineering Institute of Canada, 11 (A-2): 1-8.
 
17- Tokyay, N. D. 2005. Effect of channel bed corrugations on hydraulic jumps. Global Climate Change Conference, EWRI, May 15-19, Anchorage, Alaska, USA, Doi: 1.1061/40792(173)408, pp.408-416.
 
18- – Thornton, C. I., Watson, C. C., Abt, S. R., Lipscomb, C. M. and C. Ullman. 1999. Laboratory testing of A-Jacks units for inland applications: Pier scour protection testing. Colorado State University Research Report for Armortec Concrete Erosion Control Systems, February, 19: 10-16.