ارزیابی روش نفوذ بیرکن در برآورد هدایت هیدرولیکی اشباع خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی پژوهشکده تالاب بین المللی هامون، دانشگاه زابل

2 عضو هیئت علمی مجتمع آموزش عالی سراوان

چکیده

     هدایت هیدرولیکی اشباع خاک در شرایط مزرعه بسیار متغیر می­باشد. بنابراین، تحلیل و شبیه سازی فرآیندهای هیدرولوژیکی مثل روان­آب حاصل از باران نیاز به تعداد زیادی داده هدایت هیدرولیکی اشباع خاک حتی در مقیاس کوچک دارد. در این تحقیق، هشت روش اندازه­گیری هدایت هیدرولیکی اشباع شامل: استوانه­های مضاعف، دیسک مکشی، گلف، تک استوانه، بیرکن (بر اساس شیب)، بیرکن (بر اساس عرض از مبدأ)، وو1 و وو2 برای ارزیابی روش نفوذ بیرکن با هم مقایسه شده­اند. در روش تک استوانه از یک استوانه فلزی به شعاع 10 سانتیمتر استفاده شد. نتایج نشان داد که هدایت هیدرولیکی در روش وو1 با 104/0 سانتی­متر بر دقیقه دارای بیشترین و روش دیسک مکشی (0063/0 سانتی­متر بر دقیقه) کمترین برآورد را دارند. همچنین روش­های تک، استوانه­های مضاعف و دیسک مکشی از لحاظ آماری با یکدیگر در سطح پنج درصد اختلاف معنی­دار ندارند. همچنین هر دو روش بیرکن در یک گروه آماری قرار گرفت، اما مقدار هدایت هیدرولیکی برآورد شده در روش بیرکن (شیب)، 28 درصد بیشتر از روش بیرکن (عرض از مبدأ) بود. با توجه به نتایج این تحقیق هدایت هیدرولیکی برآورد شده با استفاده از روش بیرکن (شیب) نسبت به روش بیرکن (عرض از مبدأ) به واقعیت نزدیک­تر بود. به طور کلی روش بیرکن می­تواند جایگزین خوبی برای برآورد هدایت هیدرولیکی اشباع و پرهیز از اندازه گیری­های
زمان­بر میدانی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Beerkan Infiltration Method in Estimation of Saturated Hydraulic Conductivity of Soil

نویسندگان [English]

  • Mahdi Keikha 1
  • Meysam Amiri 1
  • Mohsen Farahi 2
1 member of Hamoun International Wetland Research Institute University of Zabol, Iran
2
چکیده [English]

     Determination of the field-saturated hydraulic conductivity can result in very high variability. So, analysis and simulation of hydrological processes such as runoff from rain requires a lot of data of field-saturated hydraulic conductivity even on a small scale. To identify this variability as well as its source, eight widely used measurement methods were compared:(Double-ring, Single-ring, Guelph permeameter, Tension infiltrometer, BESTslope, BESTintercept, Wu1 and Wu2) to evaluate the BEST method. In the single-ring method was used a metal cylinder with a radius of 10 cm. It was found that the maximum and minimum estimates of hydraulic conductivity are in Wu1 method (0.104 cm/min) and tension infiltrometer (0.0063 cm/min), respectively. The methods of double-ring, single-ring and Tension infiltrometer were not statistically significant differences at 5%. BEST methods were not statistically significant differences but BESTintercept method 28% more than BESTslope method. According to the experiment data, Kfs was estimated using the BESTintercept method is closer to reality than BESTslope method. In generally, the BEST methods can be a good alternative to estimate field-saturated hydraulic conductivity and prevent from a lot of field measurements.

کلیدواژه‌ها [English]

  • Single ring
  • Double ring
  • Beerkan
  • Field-saturated hydraulic conductivity
  • Infiltration
1-    ترابی، م. 1384. بررسی پنج روش اندازه گیری هدایت هیدرولیکی اشباع در یک خاک شور. دومین کنفرانس ملی دانشجویی منابع آب و خاک، 23 و 24 اردیبهشت، شیراز.
 
2-    رئوف، م.، صدرالدینی، س. ع. ا.، ناظمی، ا. ح. و ص. معروفی. 1390. بررسی تاثیر شیب زمین روی میزان نفوذ و برخی از مشخصه های فیزیکی خاک. مجله دانش آب و خاک، 21 (1): 68-57.
 
3-    علیزاده، ع.، نظری، ب. و ع. لیاقت. 1388. ارزیابی روش بار افتان ساده شده در اندازه گیری هدایت آبی اشباع خاک. مجله آب و خاک (علوم و صنایع کشاورزی)، 23 (2): 62-55.
 
4-    غفاری، پ.، ح. کشکولی، ح. و ر. مختاران. 1386. مقایسه روش های اندازه گیری هدایت هیدرولیکی با استفاده از گلف و نفوذ سنج مکشی . نهمین سمینار سراسری آبیاری و کاهش تبخیر، بهمن، کرمان.
 
5-    مرادی باصری، ح.، قربانی، ش.، گیوی، ج.، ، خداوردی، ح. و ب، خلیل مقدم. 1391. مقایسه سه روش صحرایی اندازه گیری هدایت آبی اشباع در برخی خاک های ورتی سل و آتی سل. نشریه آب و خاک (علوم و صنایع کشاورزی)، 26(1): 182-173.
 
6-    موسوی، ع.، خالدیان، م.، اسدی، ح.، گلی، م. و م. نوروزی. 1394. برآورد و تحلیل ویژگی های هیدرولیکی خاک از طریق آزمایش نفوذ بیرکن. مجله تحقیقات آب و خاک ایران، 46(1): 195-107.
 
7-    یمین مشرفی، گ.، معروف پور، ع.، ب. بهرام نژاد، ب. و ا. فاریابی. 1387. بررسی فرآیند نفوذ با استفاده از استوانه های مضاعف و منفرد. سومین همایش منطقه ای یافته های پژوهشی کشاورزی و منابع طبیعی، اسفند، کردستان.
 
8-    Aiello, A., Bagarello, V., Barbagallo, S., Consoli, S., Di Prima, S., Giordano, G. and M. Iovino. 2014. An assessment of the Beerkan method for determining the hydraulic properties of a sandy loam soil. Geoderma, 235: 300–307.
 
9-       Ankeny, M.D., Ahmed, M., Kaspar, T.C. and R. Horton. 1991. Simple field method for determining unsaturated hydraulic conductivity. Soil Science Society of America Journal, 55: 467–470.
 
10- Anonymous. 2010. Standard Test Method for Particle Size Analysis and Sand Shape Grading of Golf Course Putting Green and Sports Field Root Zone Mixes. ASTM International, West Conshohocken, PA.
 
11- Bagarelloa, V., Castellinib, M., Di-Primaa, S., Giordanoa, G. and M. Iovinoa. 2013. Testing a simplified approach to determine field saturated soil hydraulic conductivity. Procedia Environmental Sciences, 19: 599–608.
 
12- Bagarello, V., Di Prima, S. and M. Iovino. 2014. A test of the Beerkan Estimation of Soil Transfer parameters (BEST) procedure. Geoderma, 221: 20–27.
 
13- Bagarello, V., Di-Prima, S., Iovino, M., Provenzano, G. and A. Sgroi. 2011. Testing different approaches to characterize Burundian soils by the BEST procedure. Geoderma, 162: 141–150.
 
14- Bagarello, V. and M. Iovino. 2012. Testing the BEST procedure to estimate the soil water retention curve. Geoderma, 188: 67–76.
 
15- Bagarello, V. and G. Provenzano. 1996. Factors affecting field and laboratory measurement of saturated hydraulic conductivity. Trans ASAE, 39:153–159.
 
 
16- Bagarello, V., Iovino, M. and J. Lai. 2016. Testing steady-state analysis of single-ring and square pressure infiltrometer data. Geoderma, 261: 101–109.
 
 
17- Bouwer, H. 1986. Intake rate cylinder infiltrometer in klute a Methods of soil analysis (Part 1). America Society of Agronomy, Soil Science Society of America, Madison, Wisconsin USA, 825-843.
 
18- Braud, I., De Condappa, D., Sora, J.M., Haverkamp, R., Angulo-Jaramillo, R., Galle, S. and M. Vauclin. 2005. Use of scaled forms of the infiltration equation for the estimation of unsaturated soil hydraulics properties (the Beerkan method). European Journal of Soil Science, 56: 361–374.
 
19- Braud, I., Haverkamp, R., Arru, J. L. and M. V. Lopez. 2003. Spatial variability of soil surface properties and consequences for the annual and monthly water balance of a semiarid environment (EFEDA Experiment). Journal of Hydrometeorology, 4: 121–137.
 
20- Brooks, R. H. and A. T. Corey. 1964. Hydraulic properties of porous media. Hydrology Pap, State University, Fort Collins.
 
21- Cook, F. J. 2002.The twin-ring method for measuring saturated hydraulic conductivity and sorptivity in the field. In: McKenzie, N., K. Coughlan and H. Cress well, Soil physical measurement and interpretation for land evaluation (Part 7). CSIRO Publishing, Pp: 108-118.
 
22- Deb, S. K. and M. K. Shukla. 2012. Variability of hydraulic conductivity due to multiple factors. American Journal of Environmental Science, 8(5): 489-502.
 
23- Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M. and R. Angulo-Jaramillo. 2014. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderm, 262: 20-34.
 
24-   Fies, J.C., de Louvigny, N. and A. Chanzy. 2002. The role of stones in soil water retention. European Journal of Soil Science, 53:95–104.
 
25- Galle, S., Angulo Jaramillo, R., Braud, I., Boubkraoui, S., Bouchez, J. M., de Condappa, D., Derive, G., Gohoungssou, A., Haverkamp, R., Reggiani, P. and J. Soria-Ugaldes. 2001. Estimation of soil hydrodynamic properties of the Donga watershed (CATCH Be´nin). In: Proceedings of the GEWEX 4th International Conference, 10–14 Sept, Insitut Pierre Simon Laplace,Paris , France, 136.
 
26- Gonzalez-Sosa, E., Braud, I., Dehotin, J., Lassabatère, L., Angulo-Jaramillo, R., Lagouy, M., Branger, F. Jacqueminet, C., Kermadi, S. and M. Michel. 2010. Impact of land use on the hydraulic properties of the topsoil in a small French catchment. Hydrological Processes, 24: 2382–2399.
 
27- Gupta, R. K., Rudra, R. P., Dickinson, W. T., Patni, N.K. and G. J. Wall. 1993. Comparison of saturated hydraulic conductivity measured various field methods. Transactions of the American Society of Agricultural and Biological Engineers, American Society of Agricultural and Biological Engineers, ASABE, 36(1): 51-55.
 
28- Gwenzi, W., C. Hinz, C., Holmes, k., Phillips, I. R. and I.J. Mullins. 2011. Field scale spatial variability of saturated hydraulic conductivity on a recently constructed artificial ecosystem. Geoderma, 166:43–56.
 
29- Haverkamp, R., Arrue, J.L., Vandervaere, J. P., Braud, I., Boulet, G., Laurent, J.P., Taha, A., Ross, P.J. and R. Angulo-Jaramillo. 1996. Hydrological and thermal behaviour of the vadose zone in the area of Barrax and Tomelloso (Spain): experimental study, analysis and modeling. Project UE n EV5C-CT 920090.
 
30- Haverkamp, R., Ross, P.J., Smettem, K.R.J. and J.Y. Parlange. 1994. Three-dimensional analysis of infiltration from disc infiltrometer. 2. Physically based infiltration equation. Water Resource Research, 30: 2931–2935.
 
31- Iwanek, M. 2008. A method formeasuring saturated hydraulic conductivity in anisotropic soils. Soil Science Society of America Journal, 72(6):1527–1531.
 
32-   Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I. and R. Haverkamp. 2006. Beerkan estimation of soil transfer parameters through Infiltration Experiments-BEST. Soil Science Society of America Journal, 70: 521–532.
 
33- Logsdon, S.D. and D.B. Jaynes. 1993. Methodology for determining hydraulic conductivity with tension infiltrometers. Soil Science Society of America Journal, 57: 1426– 1431.
 
34- Moret, D. and J. L. Arrue. 2007. Dynamics of soil hydraulic properties during fallow as affected by tillage. Soil and Tillage Research, 96: 103-113.
 
35- Mubarak, I., Angulo-Jaramillo, R., Mailhol, J., Ruelle, C. P., Khaledian, M. and M. Vauclin. 2010. Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent. Agricultural Water Management, 97: 1517–1526.
 
36- Nielsen, D. and O. Wendroth. 2003. Spatial and temporal statistics: Sampling field soils and their vegetation. Germany, Reis kirchen: Catena-Verlag.
 
37- Raats, P.A.C. 1976. Analytical solutions of a simplified flow equation. Trans ASAE, 19:683–689.
 
38- Reynolds, W. D., Bowman, B. T., Brunke, R. R., Drury, C. F. and C. S. Tan. 2000. Comparison infiltrometer, pressure infiltrometer, and soil coreestimates of saturated hydraulic conductivity. Soil Science Society of America Journal, 64(2): 478-484.
 
39- Reynolds, W.D. 1993. Saturated hydraulic conductivity: Field measurement. In: M.R. Carter editor soil sampling and methods of analysis. CRC Press, Boca Raton, FL, Pp: 599–613.
 
40- Reynolds, W.D. and D.E. Elrick. 1985. In situ measurement of field-saturated hydraulic conductivity, sorptivity, and the a-parameter using the Guelph permeameter. Soil Science, 140: 292–302.
 
41- Reynolds, W. D. and D. E. Elrick. 1987. Laboratory and numerical assessment of the guelph permeameter method. Soil Science, 144: 244-282.
 
 
42-   Reynolds, W.D. and D.E. Elrick. 1990. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Science Society of America Journal, 54:1233–1241.
 
43- Reynolds, W.D., Elrick, D.E., Youngs, E.G., Booltink. H.W.G and J. Bouma. 2002. Saturated and field-saturated water flow parameters: Laboratory methods. In: J.H. Dane and G.C. Topp (ed.) Methods of soil analysis (Part4). Physical methods, SSSA Book Seri, 5. SSSA, Madison, Pp: 802–803.
 
44- Richards, L.A. 1931. Capillary conduction of liquids through porous mediums. Physics, 1: 318–333.
 
45- Rockstrom, J., Nuhu Hatibu, J., Oweis, T.Y., Wani, S., Barron, J. and A. Bruggeman. 2007. Managing water in rainfed agriculture. In: Water for food, water for life: A comprehensive assessment of water management in agriculture. International Water Manage, Colombo, Sri Lanka, Pp: 315–352.
 
46- Smettem, K.R.J., Parlange, J. Y., Ross, J.P. and R. Haverkamp. 1994. Three-dimensional analysis of infiltration from disc infiltrometer a capillary-based theory. Water Resource Research, 30: 2925–2929.
 
47-   Talsma, T. and J. Y. Parlange. 1972. One-dimensional vertical infiltration. Australian Journal of Soil Research, 10: 143–150.
 
48-   Verbist, K., Baetens, J.M., Cornelis, W.M., Gabriels, D., Torres, C. and G. Soto. 2009. Hydraulic conductivity as influenced by stoniness in degraded dry lands of Chile. Soil Science Society of America Journal, 73:471–484.
 
49-   Verbist, K.M.J., Cornelis, W.M., Torfs S.and D. Gabriels, 2012. Comparing Methods to Determine Hydraulic Conductivities on Stony Soils. Soil Science Society of America Journal, 77(1): 25-42.
 
50-   Wu, L., Pan, L., Mitchell, J. and B. Sanden. 1999. Measuring saturated hydraulic conductivity using a generalized solution for single-ring infiltrometers. Soil Science Society of America Journal, 63: 788–792.
 
51- Xu, X., Kiely, G. and G. Lewis. 2009. Estimation and analysis of soil hydraulic properties through infiltration experiments: comparison of BEST and DL fitting methods.  Soil Use Manage, 25: 354–361.
 
52- Xu, X., Lewis, C., Liu, W., Albrtson, J. D. and G. Kiely. 2012. Analysis of single-ring infiltrometer data for soil hydraulic properties estimation: Comparison of BEST and Wu methods. Agricultural Water Management, 107: 34– 41.
 
53- Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D. and M. Legret. 2010. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone Journal, 9: 107–116.