بررسی عملکرد مدل های سری زمانی و مدل های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و برنامه‏ریزی بیان ژن خودهمبسته در شبیه سازی رواناب ماهانه (مطالعه موردی: حوضه خرخره چای)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکتری مهندسی منابع آب دانشگاه تبریز

2 دانشیار گروه مهندسی منابع آب دانشگاه تبریز

3 دانشجوی دکتری منابع آب دانشگاه تبریز

چکیده

     افزایش دقت تخمین رواناب در حوضه­های فاقد داده­های هواشناسی نقش مهمی در مدیریت صحیح منابع آب این حوضه­ها دارد. در این راستا شبیه­سازی خود همبسته می­تواند مفید واقع گردد. در مطالعه حاضر، کارایی سه مدل داده­کاوی شامل شبکه عصبی مصنوعی، برنامه­ریزی بیان ژن و ماشین بردار پشتیبان در کنار مدل­های سری زمانی برای پیش­بینی رواناب ماهانه در حوضه خرخره­چای مورد ارزیابی قرار گرفت. برای این منظور، در ابتدا ترکیب­های مختلف ورودی به مدل­ها که باید در تخمین جریان رودخانه در نظر گرفته شوند، تعیین شدند. همچنین تأثیر ساختار مختلف مدل­ها بر شبیه­سازی جریان از طریق به کار گیری آنها و مقایسه نتایج به­دست آمده، مورد بررسی قرار گرفت. در این راستا، مدل­های خطی خود همبسته، خود همبسته با میانگین متحرک و خود همبسته میانگین متحرک یکپارچه، شبکه عصبی پرسپترون چند لایه، برنامه­ریزی بیان ژن با چهار و سیزده تابع ریاضی و مدل ماشین بردار پشتیبان با سه تابع کرنل به منظور شبیه­سازی خودهمبسته جریان ماهانه (طی دوره 90- 1367) به کار گرفته شدند. نتایج نشان داد مدل پرسپترون چند لایه (3,5) با مقادیر ضریب همبستگی و جذر میانگین مربعات خطا به­ترتیب برابر با 84/0 و 21/8 متر مکعب بر ثانیه در دوره واسنجی و مقادیر 86/0 و 66/5 متر مکعب بر ثانیه در دوره صحت­سنجی بیشترین دقت را در شبیه­سازی رواناب ماهانه نسبت به سایر مدل­ها داشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Assessment of Time Series and Autoregressive Artificial Neural Network Models, Support Vector Machine and Gene Expression Programming Models Performance in Monthly River Flow Simulation (Case Study: Kherkherechi River Basin)

نویسندگان [English]

  • Mohammad Isazadeh 1
  • Hojat Ahmadzadeh 1
  • Mohammad ALi Ghorbani 2
  • Mohammad Hassan Fazeli Fard 3
1 M.Sc. of Water Resources Engineering, Faculty of Agriculture, University of Tabriz.
2 Associate Professor, Water Engineering Department, Faculty of Agriculture, University of Tabriz.
3 Ph.D. Student of Water Resources Engineering, Faculty of Agriculture, University of Tabriz.
چکیده [English]

Selecting a model that simulate the runoff with high accuracy and less error, can be helpful in favorable management of water resources plans and increasing the performance of these plans. Also, increasing the accuracy of runoff simulation in the basins with no meteorological data, is of great significance in efficient management of water resources in these basins.

کلیدواژه‌ها [English]

  • Autoregressive Runoff simulation
  • Time series models
  • Multilayer perceptron
  • Kherkherehchai basin
1-    ازانی، ع.، فاضلی­فرد، م. ح. و م. ع. قربانی. 1393. شبیه­سازی سطح آب دریاچه ارومیه با استفاده از ماشین­های بردار پشتیبان و شبکه عصبی مصنوعی. سیزدهمین کنفرانس هیدرولیک ایران، دانشگاه تبریز.
 
2-   اسکندری، ع.، نوری، ر.، معراجی، ع. و ا. کیاقادی. 1391. توسعه مدلی مناسب بر مبنای شبکه عصبی مصنوعی و ماشین بردار پشتیبان برای پیش­بینی به هنگام اکسیژن خواهی بیو شیمیایی 5 روزه. مجله محیط شناسی، 38(61): 82-71.
 
3-    بنی حبیب، م. ا. و ولی پور. م. 1387. ارزیابی مقایسه­ای مدل­های آرما، آریما و مدل خودهمبسته شبکه عصبی مصنوعی در پیش بینی جریان ورودی به مخزن سد دز. اولین کنفرانس بین المللی بحران آب، دانشگاه زابل.
 
4-    سلطانی، ع.، قربانی، م. ع.، فاخری­فرد، ا.، دربندی، ص. و د. فرسادی­زاده. 1389. برنامه­ریزی ژنتیک و کاربرد آن در مدل­سازی فرآیند بارش- رواناب. دانش آب و خاک، 20(4) : 71-61.
 
5-    صفوی، ح. ر. 1388. هیدرولوژی مهندسی. انتشارات ارکان دانش، 663-611.
 
6-   عادلی، ع.، فتحی مقدم، م. و س. ح. موسوی جهرمی. 1393. استفاده از مدل استوکستیک برای تولید سری­های زمانی مصنوعی و پیش­بینی جریان ورودی، مطالعه موردی: مخزن سد تالوگ، استان خوزستان. فصلنامه بین المللی پژوهشی تحلیل منابع آب و توسعه، 2(5): 13-1.
 
7-   قربانی، م. ع. و ا. صالحی. 1390. استفاده از برنامه­ریزی بیان ژن در بررسی تغییرات داده­های کیفی آب زیرزمینی با نوسانات سطح آب در دشت برخوار اصفهان. ششمین کنگره ملی مهندسی عمران، دانشگاه سمنان.
 
8-    کارآموز، م. و ش. عراقی نژاد. 1384. هیدرولوژی پیشرفته. انتشارات دانشگاه صنعتی امیرکبیر، 310-271.
 
9-   مسعودی، ا.، پارسامهر، پ.، سلماسی، ف. و س. پوراسکندر. 1391. تخمین ضریب دبی در سرریزهای لبه­ پهن مرکب با استفاده از رگرسیون، برنامه­ریزی ژنتیک و شبکه عصبی. آب وخاک (علوم و صنایع کشاورزی)، (4)26: 942-933.
 
10- Adamowski, J. 2013. Using support vector regression to predict direct runoff, base flow and total flow in a mountainous watershed with limited data in Uttaranchal, India. Versita, 45(1), 71-83.
 
11- Anonymos. 2000. Artificial neural networks in hydrology, I: preliminary concepts. Task Committee on Application of Artificial Neural Networks in Hydrology. Journal of Hydrologic Engineering, 5(2): 115-123.
 
12- Awchi, T.A. 2014. River discharges forecasting in northern Iraq using different ANN techniques. Water Resources Management, 28(3): 801–814.
 
13- Borelli, A., De Falco, I., Della Cioppa, A., Nicodemi, M. and G.Trautteur. 2006. Performance of genetic programming to extract the trend in noisy data series. Physica A: Statistical Mechanics and Its Applications, 370(1): 104-108.
14- Box, G.E.P., Jenkins, G.M. and G.C. Reinsel. 1994. Time series analysis: Forecasting and control. Third edition, Prentice Hall.
 
15- Coulibaly, P., Anctil, F. and B. Bobée. 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology, 230(3-4): 244-257.
 
16- Dibike, Y., Velickov, S., Solomatine, D. and M. Abbott. 2001. Model induction with of support vector machines: Introduction and applications. Journal of Computing in Civil Engineering, 15(3): 208- 216.
 
17- Ghorbani, M.A., Khatibi, R., Asadi, H. and P. Yousefi. 2012. Inter-comparison of an evolutionary programming model of suspended sediment time-series whit other local model. INTECH. doi. org/10.5772/47801: 255-282.
 
18- Guo, B., Gunn, S.R., Damper, R.I. and J.D.B. Nelson. 2008. Customizing kernel functions for SVM-based hyperspectral image classification. IEEE Transactions on Image Processing, 17(4): 622-629.
 
19- Huang, W. and B.X. Chan-Hilton. 2004. Forecasting flows in Apalachicola river usingneural networks. Hydrological Processes, 18(13): 2545-2564.
 
20- Jain, A. and A.M. Kumar. 2007. Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing Journal, 7(2): 585-592.
 
21- Jian, Y., Cheng, C.T. and K.W. Chau. 2006. Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal, 51(4): 599-612.
 
22- Kakaei Lafadani, E., Moghaddam Nia, A., Ahmadi, A., Jajarmizadeh, M. and M. Ghafari. 2013. Stream flow simulation using SVM, ANFIS and NAM models (A case study). Caspian Journal of Applied Sciences Reaserch, 2(4): 86-93.
 
23- Kalteh, A.M. 2013. Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Computers and Geosciences, 54: 1–8.
 
24- Kavzoglu, T. and I. Colkesen. 2009. A kernel functions analysis for support vector machines for land coverclassification. International Journal of Applied Earth Observation and Geoinformation, 11(5): 352-359.
 
25- Khatibi, R., Naghipour, L., Ghorbani, M.A. and M.T. Aalami. 2013. Predictability of relative humidity by two artificial intelligence techniques using noisy data from two Californian gauging stations. Neural Computing and Applications, 23(7-8): 2241-2252.
 
26- Kisi, O., Moghaddam Nia, A., Ghafari Gosheh, M., Jamalizadeh Tajabadi, M.R. and A. Ahmadi. 2012. Intermittent streamflow forecasting by using several data driven techniques. Water Resources Management, 26(2): 457–474.
 
27- Kouchakzadeh, M. and A. Bahmani. 2006. Assessment of artificial neural networks revenuein reducing reqired parameters for estimation of reference evapotranspiration. Journal of Agricultural Sciences, 11(4): 87-97.
 
28- Koza, J.R. 1992. Genetic programming: On the programming of computers by means of natural selection. Cambridge, MA, MIT Press.
 
 
29- Moharrampour, M., Mehrabi, A., Hajikandi, H. and S. Sohrabi. 2013. Comparison of support vector machines (SVM) and autoregressive integrated moving average (ARIMA) in daily flow forecasting. Journal of River Engineering, 1(1): 34-45.
 
30- Nayak, P.C., Sudheer, K.P., Rangan, D.M. and K.S. Ramasastri. 2004. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(2-1): 52-66.
 
31- Salas, J.D. 1993. Analysis and modeling of hydrological time series. In: Handbook of Hydrology, edited by David R, Maidment, McGraw-Hill, New York, 19(72): 1-19.
 
32- Samsudin, R., Saad, P. and A. Shabri. 2011. River flow time series using least squares support vector machines. Hydrology and Earth System Sciences, 15: 1835-1852.
 
33- Shapiro, S.S. and M.B. Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika, 52(3-4): 591-611.
 
34- Terzi, O. and G. Ergin. 2014. Forecasting of monthly river flow with autoregressive modeling and data-driven techniques. Neural Computing and Applications, 25(1): 179-188.
 
35- Vapnik, V.N. and C. Cortes. 1995. Support vector networks. Machine Learning, 20: 273-297.
 
36- Wei, W.W.S. 2006. Time series analysis: univariate and multivariate methods. (Second edition), Greg Tobin Publisher, ISBN 0-321-32216-9.
 
37- Yang, K., Shan, G. and L. Zhao. 2006. Correlation coefficient method for support vector machine input samples. International Conference on Machine Learning and Cybernetics, PP. 2857-2861.
 
38- Zhang, G.P. 2003. Time series forecasting using a hybrid ARIMA and neural network model. Neuro Computing, 50: 159-175.