1- Ballio, F., Teruzzi, A. and Radice, A., 2009. Constriction effects in clear-water scour at abutments. Journal of Hydraulic Engineering, 135(2), pp.140-145.
2- Bayram, A. and Larson, M., 2000. Analysis of scour around a group of vertical piles in the field. Journal of waterway, port, coastal, and ocean engineering, 126(4), pp.215-220.
3- Bhattacharya, B. and Solomatine, D.P., 2006. Machine learning in sedimentation modelling. Neural Networks, 19(2), pp.208-214.
4- Coleman, S.E., Lauchlan, C.S. and Melville, B.W., 2003. Clear-water scour development at bridge abutments. Journal of Hydraulic Research, 41(5), pp.521-531.
5- Dey, S., Chiew, Y.M. and Kadam, M.S., 2008. Local scour and riprap stability at an abutment in a degrading bed. Journal of Hydraulic Engineering, 134(10), pp.1496-1502.
6- Dongol, D.M.S. and Melville, B.W., 1994. Local scour at bridge abutments. Department of Civil Engineering, University of Auckland.
7- Etemad-Shahidi, A. and Ghaemi, N., 2011. Model tree approach for prediction of pile groups scour due to waves. Ocean Engineering, 38(13), pp.1522-1527.
8- Etemad-Shahidi, A. and Mahjoobi, J., 2009. Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Engineering, 36(15-16), pp.1175-1181.
9- Etemad-Shahidi, A. and Taghipour, M., 2012. Predicting longitudinal dispersion coefficient in natural streams using M5′ model tree. Journal of hydraulic engineering, 138(6), pp.542-554.
10- Froehlich, D.C., 1989. Local scour at bridge abutments. In Proceedings of the 1989 National Conference on Hydraulic Engineering (pp. 13-18).
11- Gill, M.A., 1970. Bed erosion around obstructions in rivers (Doctoral dissertation, University of London).
12- Gill, M.A., 1972. Erosion of sand beds around spur dikes. Journal of the Hydraulics Division, 98(hy9).
13- Hager, W.H. and Oliveto, G., 2002. Shields’ entrainment criterion in bridge hydraulics. Journal of Hydraulic Engineering, 128(5), pp.538-542.
14- Kandasamy, J.K. and Melville, B.W., 1998. Maximum local scour depth at bridge piers and abutments. Journal of hydraulic research, 36(2), pp.183-198.
15- Kuhnle, R.A., Alonso, C.V. and Shields, F.D., 1999. Geometry of scour holes associated with 90 spur dikes. Journal of Hydraulic Engineering, 125(9), pp.972-978.
16- Kwan, T.F., Melville, B.W. and Raudkivi, A.J., 1984. Study of Abutment Scour: A Report Submitted to the Road Research Unit of the National Roads Board. Department of Civil Engineering, University of Auckland.
17- Laursen, E.M., 1962. Scour at bridge crossings. Transactions of the American Society of Civil Engineers, 127(1), pp.166-179.
18- Laursen, E.M., 1963. An analysis of relief bridge scour. Journal of the Hydraulics Division, 89(3), pp.93-118.
19- Melville, B.W. and Coleman, S.E., 2000. Bridge scour. Water Resources Publication.
20- Melville, B.W., 1992. Local scour at bridge abutments. Journal of Hydraulic Engineering, 118(4), pp.615-631.
21- Melville, B.W., 1997. Pier and abutment scour: integrated approach. Journal of hydraulic Engineering, 123(2), pp.125-136.
22- Najafzadeh, M., Barani, G.A. and Hessami-Kermani, M.R., 2015. Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds. Ocean Engineering, 104, pp.387-396.
23- Quinlan, J.R., 1992, November. Learning with continuous classes. In 5th Australian joint conference on artificial intelligence (Vol. 92, pp. 343-348).
24- Richardson, E.V. and Davis, S.R., 1995. Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18. Publication FHWA-IP-90-017.
25- Seo, I.W. and Cheong, T.S., 1998. Predicting longitudinal dispersion coefficient in natural streams. Journal of hydraulic engineering, 124(1), pp.25-32.
26- Sumer, B.M., Fredsøe, J. and Christiansen, N., 1992. Scour around vertical pile in waves. Journal of waterway, port, coastal, and ocean engineering, 118(1), pp.15-31.
27- Tey, C.B., 1984. Local scour at bridge abutments. Department of Civil Engineering, University of Auckland.
28- Wang, Y. and Witten, I.H., 1996. Induction of model trees for predicting continuous classes. Proceedings of the Poster Papers of the European Conference on Machine Learning, University of Economics, Faculty of Informatics and Statistics, Prague.
29- White, W.R., Milli, H. and Crabbe, A.D., 1973. Sediment transport: an appraisal methods, Vol. 2: Performance of theoretical methods when applied to flume and field data. Hydraulic Research Station Report No. IT119, Wallingford, UK.
30- Yorozuya, A. and Ettema, R., 2015. Three abutment scour conditions at bridge waterways. Journal of Hydraulic Engineering, 141(12), p.04015028.