الگوریتم انتخاب طول مؤثر بادپناهی به منظور بررسی وضعیت بادپناهی در سطح دریاچه سدها (مطالعه موردی : سطح دریاچه سد مخزنی دز)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه هیدرولوژی و منابع اب، دانشکده علوم آب، دانشگاه شهید چمران اهواز، ایران

2 گروه هیدرولوژی و منابع آب، دانشکده علوم آب، دانشگاه شهید چمران اهواز، ایران

چکیده

باد به­عنوان پدیده­ای طبیعی، نقش به­سزایی در بسیاری از فرایندهای هیدرولوژیکی ایفا می­کند. کمیتی تحت عنوان شاخص بادپناهی قادر به بررسی تأثیر باد در حوزه­های مختلف هیدرولوژی می­باشد. محاسبه شاخص بادپناهی در نقاط جغرافیایی مختلف، مستلزم تعیین طول مؤثر در محدوده مورد مطالعه می­باشد. تعیین روش انتخاب طول مؤثر در مطالعات قبلی، بسته به نوع کاربرد شاخص بادپناهی، هر یک با محدودیتی مواجه است. به­عنوان نمونه، در مناطق برفی که از روشی تحت عنوان همبستگی برای انتخاب طول مؤثر استفاده می­گردد، لزوما نیاز به داشتن عمق برف در نقاط مورد مطالعه می­باشد. همچنین، روشی موسوم به شیب میانگین بادپناهی، برای انتخاب طول مؤثر در شرایط غیر برفی با این محدودیت که، نقاط مورد مطالعه، لزوما در شرایط با بادپناهی قرار داشته باشند، مواجه است.در تحقیق حاضر، به­منظور محاسبه شاخص بادپناهی در نقاط مختلف واقع بر سطوح افقی، نظیر دریاچه سد مخزنی دز، نسبت به ارائه روشی متفاوت و متناسب با نوع کاربرد شاخص بادپناهی، برای تعیین طول مؤثر اقدام گردیده است. برای این منظور، از روشی تحت عنوان تفاضل طول­های حداکثر متوالی، اقدام به انتخاب طول مؤثر بادپناهی گردید. لذا نتیجه تحقیق ضمن تاکید بر ضرورت متناسب بودن روش انتخاب طول مؤثر با نوع کاربرد شاخص بادپناهی، شامل معرفی روشی جدید برای انتخاب طول مؤثر در شرایطی نظیر دریاچه سد مخزنی می­باشد. طول مؤثر در محدوده دریاچه مورد مطالعه، برابر با 1000 متر به­دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Algorithm for Selecting the Effective Distance of the Wind Shelter to Verify the Wind Shelter Status at the Lake Level of Dams (Case Study: Lake of Dez Reservoir Dam)

نویسندگان [English]

  • zahra shahi 1
  • Mohammad Reza Sharifi 2
1 Department of Hydrology Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran
2 Department of Hydrology Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran
چکیده [English]

To calculate the wind shelter index (Sx) for points in a region, the wind shelter index values are calculated for each set of points in different lengths and directions. Among these lengths, the length of the Sx corresponding to it has the highest wind shelter and is known as an effective length. Winstral et al. (2002), Winstral and Marks (2002), Erickson et al. (2005), Molotch et al. (2005), Molotch and Bales (2006), Sharifi et al. (2007), Litaor et al. (2008), Tabari et al. (2009) and Maroufi el al. (2010) in order to determine the effective length in snowy areas inevitably used the correlation of Sx values for each desired length and depth of snow. Winstral et al. (2009) in study of wind speed distribution methods  determined the effective length by establishing the relationship between the difference in the values of the Sx and the difference in the velocity of the wind. Farokhzadeh et al. (2014) also succeeded in determining the effective length by examining the correlation between a parameter named average wind shelter slope and Sx, provided that the selected points were in wind conditions. Therefore, due to the limitation in the method proposed by Farokhzadeh et al. (2014) for calculating the Sx in non-snow areas such as lake levels, the use of a specific type of algorithm for determining the effective wind shelter length seems necessary (Shahi, 2017). Therefore, in this study, according to the existing conditions, a method was proposed for selecting the effective length of the shelter.

کلیدواژه‌ها [English]

  • Wind
  • Free water level
  • Wind shelter index
  • Effective distance wind shelter
  • Dez Dam Reservoir
1-    Abtew, W. and Iricanin, N., 2008. Hurricane Effects on South Florida Water Management System(A Case Study of Hurricane Wilma of October 2005). Journal of Spatial Hydrology, 8(1),pp. 1-21.
 
2-    Chapman, L., 2000. Assessing topographic Exposure. Meteorological Applications, 7(4), pp 335-340.
 
3-    Daneshkar Arasteh, P., Tagrishi, M. and Mir Lotfi, M., 2006. Investigating the effect of wind speed on evaporation from the surface of the reservoir of semi-sistan well by Dalton method. Sharif Scientific Journal, 37, pp. 49-56. (In Persian)
 
4-    Erickson, T.A., Williams, M.W. and Winstral, A., 2005. Persistence of topographic controls on the spatial distribution of snow in rugged mountain. Water Resources Research, 41, pp. 1-17.
 
5-    Farokhzadeh, S., Sharifi, M.R., Moradi, Sh. and Akhond Ali, A.M., 2014. Wind Shelter Index’s Effective Distance Determination in Non Snowy Watershed Basins. Journal of Advance in Environmental Biology, 8(5), pp. 1431-1441
 
6-    Litaor, M.I., Williams, M. and Seastedt, T.R., 2008. Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation. Journal of Geophysical Research, 113(2).
 
7-    Molotch, N.P., Colee, M.T., Bales, R.C. and Dozier, J., 2005. Estimating the spatial distribution of snow water equivalent in a alpine basin using binary regression tree models: the impact of digital elevation and independent variable selection. Hydrological Prosses, 19, pp. 1459-1479.
 
8-    Molotch, N.P. and Bales, R.C., 2006. SNOTEL representativeness in the Rio Grande headwaters on the basis of physiographic and remotely sensed snow cover persistence. Hydrological Processes, 20, pp. 723-739.
 
9-    Maroufi, S., Tabari, H., Zare Abiane, H., and Sharifi, M., 2010. Investigation of wind effects on spatial distribution of snow accumulation in one of Karoon sub-basins (case study-Samsami basin). Journal of Water and Irrigation Engineering Research, 1, pp.31-44. (In Persian).
 
10- Shahi, Z., 2017. Application of Cluster Analysis of Wind Shelter for Identify the Wind-Swept Area in Reducing Evaporation Methods in Reservoirs (Case Study: Lake of Dez Reservoir Dam). Master dissertation, Shahid Chamran university of Ahvaz. (In Persian).
 
11- Sharifi, M., Akhond Ali, A., Porhemat, J. and Mohamadi, J., 2007. Evaluation of two methods of linear correlation equation and the ordinary kriging in order to estimate the spatial distribution of snow depth in Samsami watershed basin.  Journal of Iran-Watershed Management Science and Engineering Research. 1(1). (In Persian).
 
12- Tabari, H., Maroufi, S., Zare Abiane, H., Amiri Chaychian, R. and Sharifi, M.R., 2008.Comparison of nonlinear regression method with computational intelligence methods in estimating spatial distribution of snow equivalent water in karun River mirage. Journal of Agricultural Science and Technology, 4(50), pp.29-41. (In Persian).
 
13- Wang, Z. and Bowles, D.S., 2006. Overtopping breaches for a long dam estimated using a three-dimensional model. In 26th Annual United States Society on Dams Conference, San Antonio, Texas, USA.
 
14- Winstral, A., Elder, K. and Davis, R.E., 2002. Spatial Snow Modeling of Wind-Redistributed Snow Using Terrain Based Parameters. Journal of Hydrometeorology, 3, pp. 524-538.
 
15- Winstral, A. and Marks, D., 2002. Simulation wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrological Processes, 16, pp. 3585-3603.
 
16- Winstral, A., Marks, D. and Gurney, R., 2009. An efficient method for distributing wind speeds over heterogeneous trrain. Hydrological Processes, 23, pp. 2526-2535.
دوره 41، شماره 1
اردیبهشت 1397
صفحه 211-223
  • تاریخ دریافت: 02 آبان 1396
  • تاریخ بازنگری: 24 بهمن 1396
  • تاریخ پذیرش: 08 اسفند 1396
  • تاریخ انتشار: 01 اردیبهشت 1397