تخمین هدایت هیدرولیکی غیراشباع خاک با استفاده از روش معکوس در شرایط شوری خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 دانشیار گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

3 استاد گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

چکیده

شناخت ویژگی‌های هیدرولیکی خاک برای حل بسیاری از مسائل مدیریتی در کشاورزی و محیط‌زیست ضروری است. کیفیت آب بر روی هدایت هیدرولیکی خاک تأثیرگذار است. هدف این پژوهش، ارزیابی تأثیر شوری بر هدایت هیدرولیکی خاک برآوردشده به روش مدل‌سازی معکوس به کمک داده‌های نفوذ تجمعی خاک است. در این تحقیق، سه سطح شوری آب 1/1، 2/2 و 8/5 دسی‌زیمنس بر متر به‌کار برده شد. برای شبیه‌سازی معکوس پارامترهای هیدرولیکی خاک از مدل شبیه‌سازی HYDRUS-1D استفاده شد. با توجه به نتایج، سطوح شوری به‌کار رفته در این پژوهش تأثیر معنی‌داری روی نفوذپذیری و هدایت هیدرولیکی خاک نداشت. مقادیر ضریب‌ تعیین  R2برای شوری آب 1/1، 2/2 و 8/5 دسی‌زیمنس بر متر به‌ترتیب برابر 75/0، 85/0 و 82/0 به‌دست آمد که نشان‌دهنده‌ی وجود همبستگی خوب بین مقادیر نفوذ تجمعی خاک اندازه‌گیری و شبیه‌سازی شده توسط مدل‌سازی معکوس می‌باشد. بین مقادیر اندازه‌گیری و شبیه‌سازی‌شده‌ی هدایت هیدرولیکی غیراشباع خاک نیز تطابق بسیار خوبی وجود داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Unsaturated Soil Hydraulic Conductivity Using Inverse Approach Under Soil Salinity Condition

نویسندگان [English]

  • Mehrnaz Amini 1
  • Hamed Ebrahimian 2
  • Abdolmajid Liaghat 3
1 Graduate Student, Department of Irrigation and Reclamation Engineering, college of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
2 Associate professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
3 Professor, Department of Irrigation and Reclamation Engineering, college of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

Moisture flow through unsaturated zone is vital in agricultural engineering, soil science, groundwater hydrology, and environmental engineering. Moisture flow through unsaturated zone is complex due to the dependencies of flow and storage properties on the pressure head and is commonly analyzed by solving Richards’ equation. Solution of Richards’ equation requires the knowledge of soil hydraulic conductivity and water content versus pressure head functions referred to herein as the soil hydraulic properties. Since these functions are highly nonlinear, direct laboratory and field measurements are tedious, time consuming, and involve considerable uncertainty (Hari Prasad et al., 2010). An alternative to the direct determination is to employ the parameter estimation methods using inverse procedure for the determination of hydraulic properties. Indirect methods are divided into several categories, including methods based on pedotransfer functions, semi-physical, and inverse methods (Abbasi, 2007). Determination of hydraulic properties by inversion of in situ measured moisture contents, pressure heads and cumulative infiltration have become an alternative to direct measurements due to decrease in the computational costs and development of efficient optimization algorithms. Inverse solutions based on the Richards’ equation are now increasingly used for estimating the unsaturated soil hydraulic properties. The HYDRUS-1D model is one of the advanced models have been widely used to simulate one-dimensional water movement in soil. Examples of numerical studies in which infiltration data were used to inversely estimate the near-saturated soil hydraulic properties using HYDRUS model are by Simunek and van Genuchten (1996) and Rashid et al (2015). Water quality can impact on soil hydraulic conductivity changes. The effect of salinity on the hydraulic conductivity of soil has been studied by many researchers, including Moutier et al. (1998) et al. and Levy (2005). The researchers reported that increasing the salinity has increased the hydraulic conductivity of the soil. The purpose of this research was to evaluate saline water effect on unsaturated hydraulic properties and estimate these properties inversely using infiltration data.

کلیدواژه‌ها [English]

  • Soil hydraulic properties
  • Inverse Technique
  • Cumulative Infiltration
  • HYDRUS-1D
1-       Abbasi, F., Simunek, J., Feyen, J., van Genuchten, M. T. and Shouse, P. J. 2003. Simultaneous inverse estimation of soil hydraulic and solute transport parameters from transient field experiments: Homogeneous soil. Transaction of the ASAE, 46(4), 1085-1095.
 
2-       Abbasi, F. and Tajik, F. 2007. Estimation of soil hydraulic and solute transport parameters from field experiments using inverse modeling. Journal of Water and Soil Science, 11(1), 111-122. (In Persian)
 

3-       Dane, J. H. and Klute, A. 1977. Salt effects on the hydraulic properties of a swelling soil. Soil Science Society of America Journal, 47(4), 619–624.

 
4-       Prasad, K. H., Ojha, C. S. P., M., Chandramouli, P. N. and Chandra A. Madramootoo. 2010. Estimation of unsaturated hydraulic parameters from infiltration and internal drainage experiments. Journal of Irrigation and Drainage Engineering, 136(11), 766-773.
 
5-       Hopmans, J. W. and Simunek, J. 1999. Review of inverse estimation of soil hydraulic properties. Characterization and measurement of the hydraulic properties of unsaturated porous Media (pp. 643- 659). Riverside, CA: University of California.
 
6-       Le Bourgeois, O., Bouvier, C., Brunet, P. and Ayral, P. A. 2016. Inverse modeling of soil water content to estimate the hydraulic properties of a shallow soil and the associated weathered bedrock. Journal of Hydrology, 541(2), 116-126.
7-       Levy, G. J., Goldstein, D., and Momedov, A. I. 2005. Saturated hydraulic conductivity of semiarid soils: combined effects of salinity, sodicity, and rate of wetting contributions from the agricultural research organization, The Volcani Center, Bet-Dagan, Israel. Soil Science Society of America Journal, 69(3), 653–662.
 
8-       Liu, H. F., Genard, M., Guichard, S. and Bertin, N. 2007. Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes. Journal of Experimental Botany, 58(13), 3567-3580.
 
9-       Mao, D., Yeh, T. C. J., Wan, L., Hsu, K. C., Lee, C. H. and Wen, J. C. 2013. Necessary conditions for inverse modeling of flow through variably saturated porous media. Advances in Water Resources, 52, 50-61.
 
10-   Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441.
 
11-   Mertens, J., Kahl, G., Gottesburen, B. and Vanderborght, J. 2009. Inverse modeling of pesticide leaching in lysimeters: local versus global and sequential single-objective versus multiobjective approaches. Vadose Zone Journal, 8(3), 793-804.
 

12-   Moutier, M., Shainberg, I., and Levy, G. J. 1998. Hydraulic gradient, aging, and water quality effects on hydraulic conductivity of a vertisol. Soil Science Society of America Journal, 62(6), 1488–1496.

 
13-  Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resource Research, 12(3), 513–522.
 
14-   Ramos, T. B., Goncalves, M.C., Martins, J. C., van Genuchten, M. T. and Pires, F. P. 2006. Estimation of soil hydraulic properties from numerical inversion of tension disk infiltrometer data. Vadose Zone Journal. 5 (2), 684–696.
 
15-   Rashid, N. S. A., Askari, M., Tanaka, T., Simunek, J. and van Genuchten, M. T. 2015. Inverse estimation of soil hydraulic properties under oil palm trees. Geoderma, 241, 306–312.
 
16-   Rezaei, M., Seuntjens, P., Shahidi, R., Joris, I., Boënne, W., Al-Barri, B. and Cornelis, W. 2016. The relevance of in-situ and laboratory characterization of sandy soil hydraulic properties for soil water simulations. Journal of Hydrology, 534, 251–265.
 
17-   Skaggs, T. H., Trout, T. J., Simunek, J. and Shouse, P. J. 2004. Comparison of HYDRUS-2D simulation of drip irrigation with experimental observations. Journal of Irrigation and Drainage Engineering, 130(4), 304-310.
 
18-   Simunek, J. and van Genuchten, M. Th. 1996. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resource Research, 32(9), 2683–2696.
 
19-   Simunek, J., Sejna, M. and van Genuchten, M.T. 1998. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated, media, Version 2.0, IGWMC-TPS-70, Int. Ground Water Modeling Center, Colorado School of Mines, Golden, Co.
 
20-   Vahedi, A. and Tavasoli, A.1995. The effect of irrigation water salinity on wheat crop. Fars Research Center for Agriculture and Natural Resources, Final report of research project. (In Persian).
 
21-   van Genuchten M.T. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898.
 

22-   Waldron, L. J. and Constantin, J. K. 1970. Soil hydraulic conductivity and bulk volume changes during cyclic calcium-sodium exchange. Soil Science Society of America Journal, 110(2), 81–85.

 
23-   Walker, W. R. 2005. Multilevel calibration of furrow infiltration and roughness. Journal of Irrigation and Drainage Engineering, 131(2), 129-136.
 
24-   Wang, X., Youssef, M. A., Skaggs, R. W., Atwood, J. D. and Frankenberger, J. R. 2005. Sensitivity analyses of the nitrogen simulation model, DRAINMOD-N II. Transactions of the ASAE, 48(6), 2205-2212.