بررسی اثر عدم قطعیت خروجی مدل های گردش عمومی در پیش بینی متغیرهای هواشناسی استان گلستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی آب، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران

2 مسئول کارگروه پژوهش هواشناسی کاربردی، اداره کل هواشناسی استان گلستان

چکیده

به­منظور بررسی اثر عدم قطعیت خروجی مدل­های HadCM3 و ECHO-G بر پیش­بینی دمای حداقل و حداکثر، بارش و شدت خشکسالی (شاخص SPI) استان گلستان طی دوره 2045-2016 نسبت به دوره 2015-1986، خروجی این مدل­ها توسط مدل LARS-WG در 15 ایستگاه هواشناسی ریزمقیاس شد. عدم قطعیت مدل­ها به روش وزن­دهی میانگین­های مشاهداتی و نمودار جعبه­ای و تحلیل آماری داده­ها به روش آزمون­های تجزیه واریانس و مقایسه میانگین انجام گرفت. نتایج نشان داد در شبیه­سازی بارش و دما مدل HadCM3 در منطقه­های غرب و مرکز و مدل ECHO-G در منطقه شرق وزن بیشتری داشتند. در عین حال بر اساس تحلیل نمودار جعبه­ای، میزان عدم قطعیت دمای حداقل و حداکثر در بیشتر ماه­ها در دو مدل یکسان بود ولی در خصوص بارش عدم قطعیت مدل HadCM3 در اغلب ماه­ها بیشتر از مدل ECHO-G است. مطابق پیش­بینی مدل­های HadCM3 و ECHO-G، میانگین سالانه دمای حداقل به­ترتیب 5/0 و 6/1 و دمای حداکثر به­ترتیب 2/0 و 7/0 درجه سانتی­گراد افزایش خواهد یافت. همچنین این مدل­ها به­ترتیب افزایش معنی­دار بارش سالانه (9/30 میلی­متر) و کاهش غیرمعنی­دار آن (8/11 میلی­متر) را پیش­بینی کردند. نتایج تجزیه واریانس نشان داد که اثر مدل­سازی در مقیاس ماهانه بر درصد وقوع دوره­های نرمال و ترسالی و در مقیاس سالانه بر درصد وقوع دوره ترسالی خیلی شدید تأثیر دارد. بیشترین مساحت طبقه­های بارش سالانه استان در دوره پایه و پیش­بینی مدل ECHO-G در محدوده 550-350 میلی­متر و در پیش­بینی مدل HadCM3 در محدوده 650-450 میلی­متر مشاهده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Uncertainty Effect of GCMs Output on the Prediction of Meteorological Parameters in Golestan Province

نویسندگان [English]

  • Kami Kaboosi 1
  • Mohammad Kordjazi 2
1 Departement of Water Engineering, Islamic Azad University, Gorgan Branch, Gorgan, Iran
2 Head of Applied Meteorological Research Group, Golestan Meteorological Office.
چکیده [English]

One of the important issues in assessing climate change using the output of General Circulation Models (GCMs) is their uncertainty so that the outputs of a model in a region may vary with another model in the same region. Disregarding the uncertainty of these models reduces the accuracy of the final outputs (Ashofteh and Massah, 2012). Various methods have been developed to analyze and reduce the amount of uncertainty. Among the methods used to investigate the uncertainty of the output of GCMs, one can mentioned the weighted means of observation, Wilcoxon Signed Rank test, Bootstrap confidence-interval estimation technique, Box Plot method, and the cumulative frequency distribution function. Accordingly, the present study, while predicting the temperature, precipitation and drought variables in Golestan province for the future 30 years via two general circulation models including ECHO-G and HadCM3, examined the uncertainty of these models by weighted means of observation and Box Plot methods. Also, statistical analysis of data by analysis of variance and mean comparison tests are among other goals of this research.

کلیدواژه‌ها [English]

  • ECHO-G
  • HadCM3
  • LARS-WG
  • Precipitation
  • SPI
  • Temperature
1-  Abbasnia, M., Tavousi, T., Khosravi, M. and Toros, H., 2016. Uncertainty analysis of the future changes in maximum daily temperatures over Iran using GIS. Scientific- Research Quarterly of Geographical Data (SEPEHR), 25(97), pp.29-43. (In Persian).
 2- Amani, Z., Deihimfard, R. and Mokhtasi Bidgholi, A., 2016. Evaluation of drought under increasing of temperature due to climate change in rainfed wheat-growing areas of Fars province using aridity index. Electronic Journal of Crop Production, 9(12), pp.151-174. (In Persian).
 3-    Amoako-Attah, J. and B-Jahromi, A., 2016. The impact of different weather files on London detached residential building performance-deterministic, uncertainty and sensitivity analysis on CIBSE TM48 and CIBSE TM49 future weather variables using CIBSE TM52 as overheating criteria. Sustainibility, 8(11), pp.1-18.
 4-    Anonymous, 2016. Handbook of drought indicators and indices. World Meteorological Organization (WMO) and Global Water Partnership (GWP), pp.45.
 5-    Ansari, H., Khadivi, M., Salehnia, N. and Babaeian, I., 2015. Evaluation of uncertainty LARS model under scenarios A1B, A2 and B1 in precipitation and temperature forecast (case study: Mashhad synoptic stations). Iranian Journal of Irrigation and Drainage, 4(8), pp.664-672. (In Persian).
 6-    Ashofteh, P.S. and Massah, A.R., 2009. Uncertainty of climate change impact on the flood regime; case study: Aidoghmoush Basin, East Azerbaijan, Iran. Iran-Water Resources Research, 5(2), pp.27-39. (In Persian).
 7-    Ashofteh, P.S. and Massah, A.R., 2010. Impact of climate change uncertainty on temperature and precipitation of Aidoghmoush basin in 2040-2069 period. Soil and Water Science, 19.1(20), pp.85-98. (In Persian).
8-    Ashofteh, P.S. and Massah, A.R., 2012. Investigation of AOGCM model uncertainty and emission scenarios of greenhouse gases impact on the basin runoff under climate change, case study: Gharanghu Basin, East Azerbaijan. Iran-Water Resources Research, 8(2), pp.36-47. (In Persian).
 9-    Babaeian, I., Nagafineik, Z., Zabolabasi, F., Habeibei, M., Adab, H. and Malbisei, Sh., 2010 Climate change assessment over Iran during 2010-2039 by using statistical downscaling of ECHO-G model. Iranian Geography and Development Journal, 7(16), pp.135-152. (In Persian).
 10- Barzegari, F. and Malekinezhad, H., 2017. Estimating irrigation requirements under climate change (case study: Yazd-Ardakan plain). Journal of Irrigation Sciences and Engineering, 39(4), pp.85-95. (In Persian).
 11- Chen, J., Brissette, F.P., Chaumont, D. and Braun, M., 2013. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. Journal of Hydrology, 479(4), pp.200-214.
 12- Dibike, Y.B., Gachon, P., St-Hilaire, A., Ouarda, T.B.M.J. and Nguyen, V.T.V., 2008. Uncertainty analysis of statistically downscaled temperature and precipitation regimes in Northern Canada. Theoretical and Applied Climatology, 91, pp.149-170.
 13- Fattahi, E., Habibiand, M. and Kouhi, M., 2015. Climate change impact on drought intensity and duration in west of Iran. Earth Science and Climatic Change, 6(10), pp.1-9.

 14- Ghermezcheshmeh, B., Rasuli, A.A., Rezaei Banafsheh, M., Massah, A.R. and Khorshiddoost, A.M., 2015. Uncertainty analyzing of neural network in downscaling of HadCM3 data with bootstrap confidence interval method. Watershed Engineering and Management, 7(3), pp.306-316. (In Persian).

 15- Ghorbani, Kh., Bazrafshan Daryasary, M., Meftah Halaghi, M. and Ghahraman, N., 2016. The effects of climate change on climatic classification in Golestan province. Iranian Journal of Soil and Water Research, 47(2), pp.319-332. (In Persian).

 16- Goodarzi, E., Dastorani, M., Massah Bavani, A.R. and Talebi, A., 2015. Evaluation of the change- factor and LARS-WG methods of downscaling for simulation of climatic variables in the future (Case study: Herat Azam watershed, Yazd -Iran). Ecopersia, 3(1), pp.833-846.
 17- Hafezparast, M., Bafkar, A. and Panahi, E., 2017. Assessment of climate change uncertainty and its effects on the probability of the Jamishan dam inflow frequency. Journal of Soil and Water Resources Conservation, 6(3), pp.19-41. (In Persian).
 18- Hassan, Z., Shamsudin, S. and Harun, S., 2014. Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theoretical and Applied Climatology, 116(1), pp.243-257.
 19- Hosseini, S.A. and Ahmadi, H., 2016. Statistical downscaling of HadCM3 model for projection of temperature (case study: Saghez station). Journal of Agricultural Meteorology, 4(1), pp.68-73. (In Persian).
 20- IPCC, 2007. Climate change. Intergovernmental Panel on Climate Change, Synthesis Report of the Forth Assessment Report, IPCC.  
 21- Jahanbakhsh Asl, S., Khorshiddoust, A., Alinejad, M. and Pourasghr, F., 2016. Impact of climate change on precipitation and temperature by taking the uncertainty of models and climate scenarios (case study: Shahrchay basin in Urmia). Hydrogeomorphology, 2(7), pp.107-122. (In Persian).

 22- Kamal, A.R. and Massah, A.R., 2012. The uncertainty assessment of AOGCM and hydrological models for estimating Gharesu basin temperature, precipitation, and runoff under climate change impact. Iranian Water Research Journal, 5(9), pp.39-49. (In Persian).

 23- Kay, A.L., Davies, H.N., Bell, V.A. and Jones, R.G., 2009. Comparison of uncertainty sources for climate change impacts: flood frequency in England. Climatic Change, 92, pp.41-63.
 24- Khalili, N., Davary, K., Alizadeh, A., Ansari, H., Rezaee Pazhand, H., Kafi, M. and Ghahraman, B., 2016. Evaluation of the performance of ClimGen and LARS-WG models in generating rainfall and temperature time series in rainfed research station of Sisab, Northern Khorasan. Journal of Water and Soil, 30(1), pp.322-333. (In Persian).
 25- Khazaei, M.R. and Byzedi, M., 2016. Climate change impact on annual meteorological and hydrological variables of the Sirvan basin. Iran-Water Resources Research, 12(2), pp.38-48. (In Persian).
 26- Khosrovanian, J., Onagh, M., Guderzi, M. and Hejazi, S.A., 2015. Prediction of climatic parameters using LARS-WG model in Gharesu basin. Journal of Geography and Planning, 19(53), pp.93-115. (In Persian).
 27- McKee, T.B., Doesken, N.J. and Kleist, J., 1993. The Relationship of drought frequency and duration to time scales. In: Proceeding of 8th Conference on Applied Climatology, January 17-22, Anaheim, California, 179-184.
 28- Mohammadi, H., Azizi, G., Rabbani, F. and Mazaheri, D., 2017. Long-term prediction of the climate variables in northern shore of Iran on uncertainty of global climate models. Geographic Space, 16(56), pp.95-113. (In Persian).
 29- Morid, S., Moghaddasi, M., Ershad, S. and Omid, M., 2007. Drought Indices Package (DIP) software package. Iranian Water Resource Management Co., Ministry of Energy.
 30- Parvaneh, B., Shiravand, H. and Dargahian, F., 2015. Predict drought situation in the province of Lorestan during the years of 2013-2030 using downscaling of four general circulation models. Geographical Journal of Territory, 12(45), pp.1-13. (In Persian).
 31- Pourreza Bilondi, M., Akhoond Ali, A.M., Gharaman, B. and Telvari, A.R., 2015. Uncertainty analysis of a single event distributed rainfall-runoff model by using two different Markov Chain Monte Carlo methods. Journal of Water and Soil Conservation, 21(5), pp.1-25. (In Persian).
 32- Rasuli, A.A., Rezaei-Banafsheh, M., Massah, A.R., Khorshiddust, M.A. and Ghermezcheshmeh, B., 2014. Investigation impact of morpho-climatic parameters on aaccuracy of LARS-WG model. Iran-Watershed Management Science & Engineering, 8(24), pp.9-18. (In Persian).
 33- Semenov, M.A. and Stratonovitch, P., 2010. Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Research, 41, pp.1-14.
 34- Semenov, M.A., Brooks, R.J., Barrow, E.M. and Richardson, C.W., 1998. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research, 10, pp.95-107.
 35- Sheidaeian, M., Ziatabar Ahmadi, M.Kh. and Fazloula, R., 2015. Study on climate change effect on net irrigation requirement and yield for rice crop (case study: Tajan plain). Journal of Water and Soil, 28(6), pp.1284-1297. (In Persian).
 36- Solaiman, T.A., Kinga, L.M. and Simonovic, S.P., 2011. Extreme precipitation vulnerability in the Upper Thames river basin: uncertainty in climate model projections. International Journal of Climatology, 31, pp.2350-2364.
 37- Vallam, P. and Qin, X.S., 2016. Climate change impact assessment on flow regime by incorporating spatial correlation and scenario uncertainty. Theoretical and Applied Climatology, pp.1-16.
 38- Yaghoubi, B., Hosseini, S. and Nazif, S., 2017. Hydrological impact of climate change on the GavehRud watershed as affected by the parameter uncertainty. Water Engineering, 10(32), pp.71-86. (In Persian).