تأثیر بار آبی و دور آبیاری بر نفوذ تجمعی و نفوذ جانبی در آبیاری جویچه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

2 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

چکیده

افزایش بازده در آبیاری جویچه­ای، مستلزم شناخت کافی از تأثیر شرایط اولیه و مرزی متفاوت بر فرایند نفوذ و هم‌چنین نفوذ جانبی در جویچه­ها است. این پژوهش با هدف بررسی تأثیر رطوبت اولیه و بار آبی متفاوت بر نفوذ تجمعی و جانبی در آبیاری جویچه­ای انجام شد. به همین منظور، 24 آزمایش نفوذ به‌صورت آزمایش نفوذ در جویچه­ و استوانه مضاعف در شرایط اولیه (دو بار آبی پنج و ده سانتی‌متر) و مرزی (دو دور آبیاری چهار و نه روز به‌منظور فراهم آمدن دو رطوبت اولیه متفاوت) متفاوت در مزرعه انجام شد. نتایج نشان داد که با افزایش بار آبی و کاهش رطوبت اولیه، نفوذ تجمعی به­ترتیب تا 102 و 62 درصد افزایش یافت. تأثیر افزایش بار آبی از پنج به ده سانتی‌متر بر افزایش نفوذ تجمعی بیشتر از تأثیر کاهش رطوبت اولیه در اثر افزایش دور آبیاری از چهار به نه روز بود. هم‌چنین نفوذ جانبی با افزایش بار آبی تا بیش از پنج برابر و با کاهش دور آبیاری تا 96 درصد افزایش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Water Head and Irrigation Interval on Cumulative and Lateral Infiltration in Furrow Irrigation

نویسندگان [English]

  • Babak Dialameh 1
  • Hamed Ebrahimian 2
  • Masoud Parsinejad 3
  • Ali Mokhtari 1
1 1- MSc, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
2 Associate professor in Irrigation & Drainage Eng. Dept. of Irrigation & Reclamation Eng. University of Tehran
3 2- Associate Professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

Infiltration is considered as one of the most important soil parameters in the design and evaluation of furrow irrigation systems. Water is infiltrated through the wetted perimeter when it reaches a given point in the furrow until it recedes. The depth of infiltrated water at a given point, therefore, is a function of opportunity time, wetted perimeter, and soil intake characteristics (Oyonarte et al., 2002). Thus, in-depth knowledge of how the initial (e.g. initial water content) and boundary conditions (such as water head and wetted perimeter) of a furrow can act on the infiltration process is essential. Previous studies show that cumulative infiltration in furrow irrigation is highly affected by the water head and initial water content. In furrow irrigation, water infiltration into the soil is two-dimensional, both vertically and laterally (Bautista et al. 2014). Gravity forces are dominant in vertical infiltration, while suction forces dominate horizontal/lateral infiltration. Suction forces largely depend on soil matric potential, which is a function of the soil texture and structure, and play an important role in soil moisture retention, sorptivity, essential for plant growth, and lateral infiltration. Knowledge of lateral infiltration and edge effect is essential for designing furrow irrigation systems because many researchers have found that more than 60% of total infiltrated water is through the side walls of furrows.
Several studies have been carried out to determine how initial and boundary conditions may affect the cumulative and lateral infiltration in furrow irrigation, but the combined effect of water head and initial water content on infiltration process is not investigated yet.  Therefore, the main objective of this study is to investigate the combined effect of various initial (i.e., irrigation interval or initial water content) and boundary (i.e., water level or the wetted perimeter) conditions on the cumulative and lateral infiltration.

کلیدواژه‌ها [English]

  • Double-ring
  • Short block-end furrow
  • Initial conditions
  • Boundary conditions
  • Relative lateral infiltration
1-    Abbasi, F., Adamsen, F.J., Hunsaker, D.J., Feyen, J., Shouse, P. and Van Genuchten, M.T. 2003. Effects of flow depth on water flow and solute transport in furrow irrigation: Field data analysis. Journal of Irrigation and Drainage Engineering, 129(4), pp. 237-246.
 
2-    Bala, N., Singh, G., Bohra, N.K., Limba, N.K. and Baloch, S.R. 2014. Bio drainage for Restoration of Canal Command Waterlogged Area in Indian Desert. Indian Forester, 140(5), pp. 462-467.
 
3-    Bautista, E., Warrick, A.W. and Strelkoff, T.S. 2014. New results for an approximate method for calculating two-dimensional furrow infiltration. Journal of Irrigation and Drainage Engineering, 140(10), pp. 04014032.
 
4-    Ebrahimian, H. 2014. Soil infiltration characteristics in alternate and conventional furrow irrigation using different estimation methods. KSCE Journal of Civil Engineering, 18(6), pp. 1904-1911.
 
5-    Elliot, R.L. and Walker, W. 1982. Field evaluation on furrow infiltration and advance functions. Transaction of the ASAE, 25(2), pp. 396–400.
 
6-    Fangmeier, D.D. and Ramsey, K.K. 1978. Intake characteristics of irrigation furrows. ASAE, 21(4), pp. 696–700.
 
7-    Furman, A., Warrick, A.W., Zerihun, D. and Sanchez, C.A. 2006. Modified Kostiakov infiltration function: Accounting for initial and boundary conditions. Journal of Irrigation and Drainage Engineering, 132(6), pp. 587-596.
 
8-    Govers, G., Takken, I. and Helming, K. 2000. Soil roughness and overland flow. Agronomie, 20(2), pp. 131-146.
 
9-    Gregory, J.H., Dukes, M.D., Jones, P.H. and Miller, G.L. 2006. Effect of urban soil compaction on infiltration rate. Journal of Soil and Water Conservation, 61(3), pp. 117-124.
 
10- Hamilton, G., Akbar, G., Hassan, I., Raine, S., McHugh, A., Fisher, P. and Sheppard, J. 2014. Management to improve soil productivity and maximise lateral infiltration in permanent bed-furrow irrigation systems. In Proceedings of the National Soil Science Conference Soil Science Australia.
 
11- Hartge, K.H., Horn, R., Horton, R., Bachmann, J. and Peth, S. 2016. Essential Soil Physics. Schweizerbart science publishers. Germany.
 
12- Hills, R.C. 1970. The determination of the infiltration capacity of field soils using the cylinder infiltrometer. Technical Bulletin, British Geomorphological Research Group.
 
13- Izadi, B. and Wallender, W.W. 1985. Furrow hydraulic characteristics and infiltration. ASAE, 28(6), pp. 1901-1908.
 
14- Karmeli, D., Salazar, L. and Walker, W. 1978. Assessing the spatial variability of irrigation water application. Office of Research and Development US Environmental Protection Agency, Oklahoma, USA.
 
15- Miao, Q., Rosa, R.D., Shi, H., Paredes, P., Zhu, L., Dai, J. and Pereira, L. S. 2016. Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach. Agricultural Water Management, 165, pp.  211-229.
 
16- Oyonarte, N.A., Mateos, L. and Palomo, M.J. 2002. Infiltration variability in furrow irrigation. Journal of Irrigation and Drainage Engineering, 128(1), pp. 26-33.
 
17- Philip, J.R. 1957. The theory of infiltration: 5. the influence of the initial moisture content. Soil Science, 84(4), pp. 329–339.
 
18- Philip, J.R. 1969. Theory of infiltration. Advance Hydroscience, 5, pp.  215–305.
 
19- Skonard, C.J. 2002. A field-scale furrow irrigation model. PhD dissertation, University of Nebraska-Lincoln, Lincoln, USA.
 
20- Sloan, B.P., Basu, N.B. and Mantilla, R. 2016. Hydrologic impacts of subsurface drainage at the field scale: Climate, landscape and anthropogenic controls. Agricultural Water Management, 165, pp.  1-10.
 
21- Souza, F. 1981. Nonlinear hydrodynamic model of furrow irrigation. PhD dissertation, University of California, Davis, California.
 
22- Valiantzas, J.D., Pollalis, E.D., Soulis, K.X. and Londra, P.A. 2009. Modified form of the extended Kostiakov equation including various initial and boundary conditions. Journal of Irrigation and Drainage Engineering, 135(4), pp. 450-458.
 
23- Vogel, T. and Hopmans, J.W. 1992. Two-dimensional analysis of furrow infiltration. Journal of Irrigation and Drainage Engineering, 118(5), pp. 791-806.
 
24- Walker, W.R. and Kasilingam, B. 2004. Another look at wetted perimeter along irrigated furrows—modeling implications. World Water and Environmental Resources Congress: ASCE/EWRI Salt Lake City, UT.
 
25- Walker, W.R. and Skogerboe, G.V. 1987. Surface Irrigation Theory and Practice. Prentice-Hall, Englewood Cliffs, New Jersey. USA.
 
26- Wallender, W.W. and Rayej, M. 1990. Shooting method for Saint Venant equations of furrow irrigation. Journal of Irrigation and Drainage Engineering, 116(1), pp. 114–122.
 
27- Yonts, C.D., Eisenhauer, D.E. and Varner, D.L. 2003. Managing furrow irrigation systems. Cooperative Extension, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln.
 
28- Zerihun, D., Feyen, J. and Reddy, J.M. 1996. Sensitivity analysis of furrow-irrigation performance parameters. Journal of Irrigation and Drainage Engineering, 122(1), pp. 49–57.