1- Blasone, R.S., Vrugt, J.A., Madsen, H., Rosbjerg, D., Robinson, B.A. and Zyvoloski, G.A., 2008. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances in Water Resources, 31(4), pp.630-648.
2- Bergström, S. and Graham, L.P., 1998. On the scale problem in hydrological modelling. Journal of Hydrology, 211(1-4), pp.253-265.
3- Beven, K. and Binley, A., 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6(3), pp.279-298.Beven, K.J. 2001. Rainfall-Runoff Modeling: The Primer. Wiley, Chichester. 488 pages.
4- Beven, K.J., 2001. Rainfall-runoff modelling: The primer. John Wiley & Sons, Chichester. Rainfall-runoff modelling: The primer. John Wiley & Sons, Chichester.
5- Chowdhury, S. and Sharma, A., 2007. Mitigating parameter bias in hydrological modelling due to uncertainty in covariates. Journal of Hydrology, 340(3-4), pp.197-204.
6- Duan, Q., Sorooshian, S. and Gupta, V., 1992. Effective and efficient global optimization for conceptual rainfall‐runoff models. Water Resources Research, 28(4), pp.1015-1031.
7- Engeland, K., Xu, C.Y. and Gottschalk, L., 2005. Assessing uncertainties in a conceptual water balance model using Bayesian methodology/Estimation bayésienne des incertitudes au sein d’une modélisation conceptuelle de bilan hydrologique. Hydrological Sciences Journal, 50(1).
8- Hastings, W.K., 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), pp.97-109.
9- Jorgeson, J. and Julien, P., 2005. Peak flow forecasting with radar precipitation and the distributed model CASC2D. Water International, 30(1), pp.40-49.
10- Jin, X., Xu, C.Y., Zhang, Q. and Singh, V.P., 2010. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Journal of Hydrology, 383(3-4), pp.147-155.
11- Kingston, D.G. and Taylor, R.G., 2010. Sources of uncertainty in climate change impacts on river discharge and groundwater in a headwater catchment of the Upper Nile Basin, Uganda. Hydrology and Earth System Sciences, 14(7), p.1297.
12- Kuczera, G. and Parent, E., 1998. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. Journal of Hydrology, 211(1-4), pp.69-85.
13- Mantovan, P. and Todini, E., 2006. Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. Journal of Hydrology, 330(1-2), pp.368-381.
14- Marshall, L., Nott, D. and Sharma, A., 2004. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resources Research, 40, W02501.
15- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., 1953. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), pp.1087-1092.
16- Montanari, A., 2005. Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall‐runoff simulations. Water Resources Research, 41(8).
17- Moradkhani, H., Hsu, K.L., Gupta, H. and Sorooshian, S., 2005. Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resources Research, 41(5), (In Persian).
18- Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models, Part I. A discussion of principles. Journal of Hydrology. 10: 282–290.
19- Sorooshian, S. and Dracup, J.A., 1980. Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases. Water Resources Research, 16(2), pp.430-442.
20- Stedinger, J.R., Vogel, R.M., Lee, S.U. and Batchelder, R., 2008. Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resources Research, 44(12).
21- Vázquez, R.F., Beven, K. and Feyen, J., 2009. GLUE based assessment on the overall predictions of a MIKE SHE application. Water Resources Management, 23(7), pp.1325-1349.
22- Vrugt, J.A., Gupta, H.V., Dekker, S.C., Sorooshian, S., Wagener, T. and Bouten, W., 2006. Application of stochastic parameter optimization to the Sacramento soil moisture accounting model. Journal of Hydrology, 325(1-4), pp.288-307.
23- Xu, C.Y., 2001. Statistical analysis of parameters and residuals of a conceptual water balance model–methodology and case study. Water Resources Management, 15(2), pp.75-92.
24- Xu, H., Taylor, R.G. and Xu, Y., 2011. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China, Hydrology and Earth System Sciences, 15(1), pp.333-344.
25- Zacharias, I., Dimitriou, E. and Koussouris, T., 2005. Integrated water management scenarios for wetland protection: application in Trichonis Lake. Environmental Modelling & Software, 20(2), pp.177-185.