تخمین عدم قطعیت در واسنجی فرآیند بارش– رواناب روزانه با استفاده از تابع تشابه تعمیم‌یافته در مدل HBV

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دوره دکتری مهندسی منابع آب، دانشگاه بوعلی سینا همدان.

2 استاد گروه مهندسی علوم آب دانشکده کشاورزی، دانشگاه بوعلی سینا همدان

چکیده

تعیین دقیق میزان رواناب حاصل از بارش در سطح حوضه‌های آبریز، ‌به‌دلیل تأثیر مؤلفه‌های مختلف، نظیر رطوبت خاک، تبخیر و تعرق، نفوذ و عدم امکان اندازه‌گیری دقیق آن‌ها، توأم با خطا است.از این‌روی شبیه‌سازی فرآیند بارش رواناب با عدم قطعیت همراه است. عدم قطعیت در واسنجی مدل‌ها، ناشی از اطلاعات ورودی، ساختار مدل و پارامترهای به‌کار رفته می‌باشد.کمی‌سازی عدم قطعیت، برای تصمیم‌گیری در طرح‌های منابع آب، ضروری است. یکی از روش‌های محاسبه عدم قطعیت در فرآیند شبیه‌سازی، استفاده از تئوری بیز به‌عنوان پایه محاسبات است. در این تحقیق از روش ابتکاری که ترکیبی از تحلیل بیز و شیوه مونت‌کارلو با در نظر گرفتن معیارهای نکویی برازش است، تحت عنوان تابع تشابه تعمیم یافته در محاسبه عدم قطعیت استفاده گردید. به‌منظور تشخیص عدم قطعیت پارامترهای مورد استفاده در واسنجی مدل بارش- رواناب HBV از معادله جریان روزانه ورودی به سد شهید رجایی در حوضه آبریز تجن، استفاده گردید. نتایج نشان داد روش مزبور قابلیت تشخیص عدم قطعیت در مدل را دارد. به‌طوری که شاخص ناش در در بازه 4/0 تا 68/0 به‌دست آمد. روش مزبور در خصوص شناسایی و معرفی نظریه همپایانی، با استفاده از دسته پارامترهای مختلف در واسنجی مدل، موثر است. به‌طوریکه با به‌کارگیری دسته‌ پارامترها، مقدار یکسانی از شاخص نکویی برازش، حاصل می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Uncertainty estimation of rainfall-runoff calibration process using the generalized likelihood method (GLUE) in the HBV model

نویسندگان [English]

  • Mojtaba Ahmadizadeh 1
  • Safar Marofi 2
1 Ph.D. of Water Resources Engineering, Department of Water Science Engineering, Bu-Ali Sina University.
2 Professor, Department of Water Science Engineering, Bu-Ali Sina University
چکیده [English]

The accurate determination of the amount of runoff resulting from precipitation on the surface of the watersheds is accompanied by errors due to the effect of various components, such as soil moisture, evaporation and transpiration, infiltration, and the impossibility of accurately measuring them. Therefore, the simulation of the precipitation-runoff process is associated with uncertainty. Uncertainty in calibrating models is caused by input information, model structure, and used parameters. Quantifying uncertainty is necessary for making decisions in water resource plans. One of the methods of calculating the uncertainty in the simulation process is to use Bayes's theory as the basis of calculations. In this research, an innovative method, which is a combination of Bayes analysis and the Monte Carlo method, taking into account the goodness of fit criteria, under the title of generalized similarity function, was used to calculate uncertainty. To determine the uncertainty of the parameters used in the calibration of the HBV rainfall-runoff model, the equation of daily flow entering the Shahid Rajaei dam in the Tajen catchment was used. The results showed that the mentioned method can detect uncertainty in the model. So the Nash index was obtained in the range of 0.4 to 0.68. The mentioned method is effective in identifying and introducing the co-termination theory, using a set of different parameters in the calibration of the model. So that by using the set of parameters, the same value of the goodness of fit index is obtained.

کلیدواژه‌ها [English]

  • Bayesian analysis
  • Monte Carlo
  • Equatability
  • Simulation
  • Shahid Rajaei Dam
1- Blasone, R.S., Vrugt, J.A., Madsen, H., Rosbjerg, D., Robinson, B.A. and Zyvoloski, G.A., 2008. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances in Water Resources, 31(4), pp.630-648.
 
2- Bergström, S. and Graham, L.P., 1998. On the scale problem in hydrological modelling. Journal of Hydrology, 211(1-4), pp.253-265.
 
3- Beven, K. and Binley, A., 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6(3), pp.279-298.Beven, K.J. 2001. Rainfall-Runoff Modeling: The Primer. Wiley, Chichester. 488 pages.
 
4- Beven, K.J., 2001. Rainfall-runoff modelling: The primer. John Wiley & Sons, Chichester. Rainfall-runoff modelling: The primer. John Wiley & Sons, Chichester.
 
5- Chowdhury, S. and Sharma, A., 2007. Mitigating parameter bias in hydrological modelling due to uncertainty in covariates. Journal of Hydrology, 340(3-4), pp.197-204.
 
6- Duan, Q., Sorooshian, S. and Gupta, V., 1992. Effective and efficient global optimization for conceptual rainfall‐runoff models. Water Resources Research, 28(4), pp.1015-1031.
 
7- Engeland, K., Xu, C.Y. and Gottschalk, L., 2005. Assessing uncertainties in a conceptual water balance model using Bayesian methodology/Estimation bayésienne des incertitudes au sein d’une modélisation conceptuelle de bilan hydrologique. Hydrological Sciences Journal, 50(1).
 
8- Hastings, W.K., 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), pp.97-109.
 
9- Jorgeson, J. and Julien, P., 2005. Peak flow forecasting with radar precipitation and the distributed model CASC2D. Water International, 30(1), pp.40-49.
 
10- Jin, X., Xu, C.Y., Zhang, Q. and Singh, V.P., 2010. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. Journal of Hydrology, 383(3-4), pp.147-155.
 
11- Kingston, D.G. and Taylor, R.G., 2010. Sources of uncertainty in climate change impacts on river discharge and groundwater in a headwater catchment of the Upper Nile Basin, Uganda. Hydrology and Earth System Sciences, 14(7), p.1297.
 
12- Kuczera, G. and Parent, E., 1998. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. Journal of Hydrology, 211(1-4), pp.69-85.
 
13- Mantovan, P. and Todini, E., 2006. Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. Journal of Hydrology, 330(1-2), pp.368-381.
 
14- Marshall, L., Nott, D. and Sharma, A., 2004. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resources Research, 40, W02501.
 
15- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., 1953. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), pp.1087-1092.
 
16- Montanari, A., 2005. Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall‐runoff simulations. Water Resources Research, 41(8).
 
17- Moradkhani, H., Hsu, K.L., Gupta, H. and Sorooshian, S., 2005. Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resources Research, 41(5), (In Persian).
 
18- Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models, Part I. A discussion of principles. Journal of Hydrology. 10: 282–290.
 
19- Sorooshian, S. and Dracup, J.A., 1980. Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases. Water Resources Research, 16(2), pp.430-442.
 
20- Stedinger, J.R., Vogel, R.M., Lee, S.U. and Batchelder, R., 2008. Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resources Research, 44(12).
 
21- Vázquez, R.F., Beven, K. and Feyen, J., 2009. GLUE based assessment on the overall predictions of a MIKE SHE application. Water Resources Management, 23(7), pp.1325-1349.
 
22- Vrugt, J.A., Gupta, H.V., Dekker, S.C., Sorooshian, S., Wagener, T. and Bouten, W., 2006. Application of stochastic parameter optimization to the Sacramento soil moisture accounting model. Journal of Hydrology, 325(1-4), pp.288-307.
 
23- Xu, C.Y., 2001. Statistical analysis of parameters and residuals of a conceptual water balance model–methodology and case study. Water Resources Management, 15(2), pp.75-92.
 
24- Xu, H., Taylor, R.G. and Xu, Y., 2011. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China, Hydrology and Earth System Sciences, 15(1), pp.333-344.
 
25- Zacharias, I., Dimitriou, E. and Koussouris, T., 2005. Integrated water management scenarios for wetland protection: application in Trichonis Lake. Environmental Modelling & Software, 20(2), pp.177-185.