2- Ahmed, A.M. and Shah, S.M.A., 2017. Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River. Journal of King Saud University-Engineering Sciences, 29(3), pp.237-243.
3- Alavi Panah, S.K., Rafiei Emam, A., Hosseini, S.Z. and Jafar Beyghlo, M., 2007. Investigation of spectral variability of vegetation and water phenomena using remote sensing. Geographical Research Quarterly, 38 (6), pp. 81-97. (in Persian).
4- Aqil, M., Kita, I., Yano, A. and Nishiyama, S., 2007. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool. Journal of environmental management, 85(1), pp.215-223.
5- Azad, A., Karami, H., Farzin, S., Saeedian, A., Kashi, H. and Sayyahi, F., 2018. Prediction of water quality parameters using ANFIS optimized by intelligence algorithms (case study: Gorganrood River). KSCE Journal of Civil Engineering, 22(7), pp.2206-2213.
6- Baban, S.M., 1993. Detecting water quality parameters in the Norfolk Broads, UK, using Landsat imagery. International Journal of Remote Sensing, 14(7), pp.1247-1267.
7- Bonansea, M., Rodriguez, M.C., Pinotti, L. and Ferrero, S., 2015. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sensing of Environment, 158, pp.28-41.
8- Chouakri, S.A., Bereksi-Reguig, F., Ahmaldi, S. and Fokapu, O., 2005, September. Wavelet denoising of the electrocardiogram signal based on the corrupted noise estimation. In Computers in Cardiology, 2005 (pp. 1021-1024). IEEE.
9- Choubey, V.K., 1994. Monitoring surface water conductivity with Indian remote sensing satellite data: A case study from central India. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 219, pp.317-326.
10- Cohen, A. and Kovacevic, J., 1996. Wavelets: The mathematical background. Proceedings of the IEEE, 84(4), pp.514-522.
11- Delfan, H., 2017. Design of Remote Sensing GIS System and for Monitoring Surface Water Quality. Master's degree, Thesis, Shahid Chamran University of Ahvaz, Iran. (In Persian).
12- Deng, W., Wang, G. and Zhang, X., 2015. A novel hybrid water quality time series prediction method based on cloud model and fuzzy forecasting. Chemometrics and Intelligent Laboratory Systems, 149, pp.39-49.
13- Fatahi Moghadam Noghabi, M., 2011. Estimation of Karoon river water quality in Ahvaz region by ground data, Fieldsepk Spectrometer 3 and hyperion sensor data. Ms. Thesis, Shahid Chamran University, of Ahvaz, Iran. (in Persian).
14- González-Márquez, L.C., Torres-Bejarano, F.M., Torregroza-Espinosa, A.C., Hansen-Rodríguez, I.R. and Rodríguez-Gallegos, H.B., 2018a. Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia. Journal of South American Earth Sciences, 82, pp.231-238.
15- González-Márquez, L.C., Torres-Bejarano, F.M., Rodríguez-Cuevas, C., Torregroza-Espinosa, A.C. and Sandoval-Romero, J.A., 2018b. Estimation of water quality parameters using Landsat 8 images: application to Playa Colorada Bay, Sinaloa, Mexico. Applied Geomatics, 10(2), pp.147-158.
16- Graps, A., 1995. An introduction to wavelets. IEEE Computational Science and Engineering, 2(2), pp.50-61.
17- Gürsoy, Ö., Birdal, A.C., Özyonar, F. and Kasaka, E., 2015. Determining and monitoring the water quality of Kizilirmak River of Turkey: First results. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), p.1469. -1474.
18- Jang, J.S.R., Sun, C.T. and Mizutani, E., 1997. Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]. IEEE Transactions on Automatic Control, 42(10), pp.1482-1484.
19- Liu, J., Zhang, Y., Yuan, D. and Song, X., 2015. Empirical estimation of total nitrogen and total phosphorus concentration of urban water bodies in china using high resolution ikonos multispectral imagery. Water, 7(11), pp.6551-6573.
20- Mallat, S.G., 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), pp.674-693.
21- Mokarram, M., Mokarram, M., Zarei, A., Safarinejadian, B. 2017. 'Using adaptive Neuro-Fuzzy network (ANFIS) to predict underground water quality in west of Fars province during 2003 to 2013 period', Iranian journal of Ecohydrology, 4(2), pp. 547-559. (in Persian).
22- Morid Najad, A., 2015. Determination of the percentage of suspended solids in surface waters using the separation Technique in ASTER images. Ms. Thesis, Tarbiat Modares University. (in Persian).
23- Najah, A., A. El-Shafie, Othman A. Karim, and Amr H. El-Shafie. 2014. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring. Environmental Science and Pollution Research 21, 3: 1658-1670.
24- Nourani, V. and Komasi, M., 2013. A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process. Journal of Hydrology, 490, pp.41-55.
25- Onderka, M. and Pekárová, P., 2008. Retrieval of suspended particulate matter concentrations in the Danube River from Landsat ETM data. Science of the Total Environment, 397(1-3), pp.238-243.
26- Pajares, G. and De La Cruz, J.M., 2004. A wavelet-based image fusion tutorial. Pattern Recognition, 37(9), pp.1855-1872.
27- Pourhaghi, A., 2013. The Application of time series, neural network and regression methods to predict inflow to Dez dem. M.s. Theseis, Shahid Chamran University of Ahvaz, Iran.(in Persian).
28- Pourhaghi, A., Solgi, A., Radmanesh, F., Shehni Darabi, M. 2018. Hybrid Usage of The Wavelet ransform and Intelligent to Simulation River Flow (Case Study: KaKa Reza and Sarab seyed Ali rivers), Irrigation and Water Engineering, 8(4), pp. 1-17.
29- Polikar, R., 2009. The wavelet tutorial-Part 1. Rowan University.
30- Poularikas AD., 2000 The Transforms and Applications Handbook. Second edition. Howell KB, Chapter 1. CRC Press LLC,.
31- Solgi, A., Pourhaghi, A., Bahmani, R. and Zarei, H., 2017. Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD). Ecohydrology & Hydrobiology, 17(2), pp.164-175.
32- Unser, M. and Aldroubi, A., 1996. A review of wavelets in biomedical applications. Proceedings of the IEEE, 84(4), pp.626-638.
33- Veysi S, Naseri AA, Hamzeh S, Bartholomeus H. A., 2017. satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agricultural Water Management. 31;189:70-86.