ارزیابی سهم اجزای شبکه جریان در اطراف زهکش‌ زیرزمینی در یک مزرعه شالیزاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری مهندسی آب، کارشناس مهندسی رودخانه ها و سواحل شرکت آب منطقه ای استان مازندران

2 استاد گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 دانشیار گروه مدیریت منابع آب، دانشگاه وخنینگن هلند.

چکیده

الگوی جریان آب به سمت زهکش و اجزای شبکه جریان، اساس روابط طراحی سیستم زهکشی و تعیین کننده فاصله و عمق زهکش­ها می­باشند. این تحقیق، با هدف ارزیابی سهم اجزای جریان در اطراف زهکش زیرزمینی در مزرعه آزمایشی زهکشی زیرزمینی اراضی شالیزاری در دانشگاه علوم کشاورزی و منابع طبیعی ساری طی سال 1397 انجام شد. مقادیر سطح ایستابی و دبی زهکش­ها به­صورت روزانه در طول فصل کشت کلزا اندازه­گیری شده و هدایت هیدرولیکی افقی و عمودی لایه­های مختلف نیز به­روش چاهک تعیین شدند. بار اجزای جریان نیز با فرمول­های موجود محاسبه و با مقادیر اندازه­گیری شده مزرعه­ای مقایسه شد. نتایج نشان داد منحنی سطح ایستابی در فاصله بین دو زهکش، حالت افقی داشته و تنها در نزدیکی زهکش، افت زیادی مشاهده شد. وجود یک لایه با نفوذپذیری کم در عمق 60-30 سانتی­متری موجب کاهش نفوذ عمودی و افزایش حرکت افقی آب به سمت زهکش شده است. هم­چنین مقادیر اجزای جریان نشان داد که بار جریان افقی بخش اعظمی از جریان را تشکیل داده و همبستگی مناسبی بین مقادیر محاسباتی بار افقی و مقادیر اندازه­گیری شده وجود داشت اما، سهم جز عمودی جریان کم برآورد شد و با اندازه­گیری­های مزرعه­ای مطابقت نداشت. مقدار کل بار جریان برآورد شده نیز با مقدار سطح ایستابی اندازه­گیری شده اختلاف زیادی داشت. در مجموع، جریان افقی و شعاعی در محاسبه بار جریان در مزرعه شالیزاری سهم زیادی داشته و به­دلیل کم بودن نفوذپذیری لایه کفه سخت و مقاومت در برابر جریان عمودی، اختلاف زیادی در مقدار بار کل جریان با مقدار اندازه­گیری شده وجود داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of contribution of flow network components around drain tubes in paddy field drainage

نویسندگان [English]

  • Mehdi Jafari 1
  • Ali Shahnazari 2
  • Henk Ritzema 3
1 Ph.D. of Water Engineering, river engineering expert in Mazandaran Regional Water Company, Iran.
2 Professor of Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Iran;
3 Associate Professor of Water Resources Management Group, Wageningen University, Wageningen 6700–6709, The Netherlands.
چکیده [English]

Many theories are found for subsurface drainage system design (Kumar et al., 2013). These were formulated by some of the soil characteristics that are important in designing and operating drainage systems. Most of these formulas have simplified and just involved flow parameters or assumed soil media as a maximum of two layers. In paddy fields, used equations for water table depth prediction have no accordance with field condition. Due to specific flow situations in these fields, much difference was observed in results (Darzi-Naftchali et al., 2013). The differences were because of special layered soil in paddy fields and soil hydraulic characteristics, hardpan layer existence formed in long cultivation and tillage, its effect on flow, and of course, lack of a suitable formula for these fields. So, designing rules for subsurface drainage in paddy fields needs investigation and implementation of new relations to predict the flow pattern suitably. Determination of design criteria and suitable formulas needed to predict flow network around drain tubes. Jafari-Talukolaee et al. (2017) reported in predicting water table profile between bilevel subsurface drainage in paddy fields due to the existence of resistance in vertical flow direction based on soil layers, and field results have no suitable agreement with analytical solution. Darzi-Naftchali et al. (2013), analyzing the effect of subsurface drainage systems on water balance and water table in paddy fields for a successive rice and canola cultivation season, obtained that shallow drainage systems were more influenced than deep drainage systems in water table control. The flow pattern of water towards the drain tube and the components of the flow network are the basis of the drainage system design. By determining the flow path towards the drains and the water table profile variation, the distance and depth of the drains in paddy fields can be determined with greater accuracy.

کلیدواژه‌ها [English]

  • vertical
  • loads
  • horizontal loads
  • radial loads
  • drain discharge
  • Water table
  • Ahmadi, M.Z. 1991. Field estimation of the spacing of parallel drainage ditches. Agricultural Water Management. 20, pp. 203-207. Doi: 10.1016/0378-3774(91)90017-D.

 

  • Ahmadi, M.Z. 1999. Use of piezometers to find the depth to impermeable layer in the design of drainage systems. Hydrological Sciences Journal. 44(1), pp. 25-31. Doi: 10.1080/02626669909492200.

 

  • Aimrun, M., Amin, M.S.M. and Eltaib, S.M. 2004. Effective porosity of paddy soils as an estimation of its saturated hydraulic conductivity. 121, pp. 197–203. Doi: 10.1016/j.geoderma.2003.11.010.

 

  • Alizadeh, A. 2006. New drainage (planning, design and management of drainage systems)/ by L. Smedema and W. Voltman, and D. Rycroft. Translated in Persian. Imam Reza Publication. Publication 2. 496 p.

 

  • Behbahani, S.M.R. and Rahimi khob, A. 2002. Simulation of two-dimensional transient flow to drainage ditches. Journal of Agriculture Sciences and Natural Resources. 9(1), pp. 161-167. (In Persian)

 

  • Bouarfa, S. and Zimmer, D. 2000. Water table shapes and drain flow rates in shallow drainage systems. Journal of Hydrology. 235, pp. 264-275. Doi: 10.1016/S0022-1694(00)00280-8.

 

  • Chan, C.S. and Cheong, A.W. 2001. Subsurface drainage effect on soil and rice crop. Journal of Tropical Agriculture and Food Science. 29(2), pp. 177-187.

 

  • Dagan, G. 1965. Steady drainage of two layered soil. Journal of Irrigation and Drainage Engineering. Div. ASCE 91, pp. 51-64. Doi: 10.1061/JRCEA4.0000372.
  • Darzi, A., Ejlali, F., Ahmadi, M.Z. and Najafi, Gh. 2007. The suitability of controlled drainage and sub irrigation in paddy fields. Pakistan Journal of Biological Sciences. 10(3), pp. 492–497. Doi: 10.3923/pjbs.2007.492.497.

 

  • Darzi-Naftchali, A., Mirlatifi, S.M., Shahnazari, A., Ejlali, F. and Mahdian, M.H. 2013. Effect of subsurface drainage on water balance and water table in poorly drained paddy fields. Agricultural Water Management. 130, pp. 61-68. Doi: 10.1016/j.agwat.2013.08.017.

 

  • Darzi-Naftchally, A., Mirlatifi, S.M. and Asgari, A. 2014. Comparison of steady- and unsteady-state drainage equations for determination of subsurface drain spacing in paddy fields: a case study in Northern Iran. Paddy Water Environment. 12, pp. 103–111.

 

  • Darzi-Naftchali, A., Shahnazari, A. 2015. Assessment of Unsteady- State Drainage Equations to Determine the Spacing of Subsurface Drains in Paddy Fields. Iranian Journal of Irrigation and Drainage. 3(9), pp. 419-429. (In Persian)

 

  • Dieleman, P.J. 1974. Deriving soil hydrological constants from field drainage tests. In: Drainage Principle and Application, vol. III, Survey and Investigations, International Institute for Land Reclamation and Improvement (ILRI) Wageningen, the Netherlands pp. 329-350.

 

  • Donnan, W.W. 1946. Model tests of a tile-spacing formula. Proc, Soil Science Society of America, 11, pp. 131-136.

 

  • Dumm, L. 1954. Drain spacing formula. Agricultural Engineering. 35, pp. 726-730.

 

  • Ebrahimian, H. and Noory, H. 2015. Modeling paddy field subsurface drainage using HYDRUS-2D. Journal of Paddy and Water Environment. 13(4), pp. 477-485.

 

  • 2014. FAO Statistical Year Book. Food and Agriculture Organization of the United Nations, Bangkok, 195 pp.

 

  • Garg, K.K., Das, B.S., Safeeq, M. and Bhadoria, P.B.S. 2009. Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport. Agricultural Water 96, pp. 1705–1714. Doi: 10.1016/j.agwat.2009.06.018.

 

  • Grismer, M.E. and Tod, I.C. 1991. Drainage of clay overlaying artesian aquifer. I: Hydrologic assessment. Journal of Irrigation and Drainage Engineering Division, American Society of Civil Engineers. 117 (2), pp. 255-270. Doi: 10.1061/(ASCE)0733-9437(1991)117:2(255).

 

  • Hamzeh, , Naseri,  A.A., Kashkuli. H.A. 2013. Variations of Water Table Profile and Outflow of Bi-level Drains in a Layered Soil. Journal of Water and Soil. 27(1), pp. 1-13. Doi: 10.22067/JSW.V0I0.22195. (In Persian)

 

  • Iran Water Resources Management CO. 1996. Manual of Casing and Establishment of Observation Wells. Publication No. 154. 29 p. (In Persian)

 

  • Iran Water Resources Management CO. 2005. Soil Hydraulic Conductivity Test Manual. Publication No. 322. 127 p. (In Persian)

 

  • Jafari Talukolaee, M., A. Shahnazari, M.Kh. Ziatabar-Ahmadi. 2013. An Investigation of the Effect of Two Drainage Envelope Types on Subsurface Drainage Flow Rates in Paddy Fields of Mazandaran Province. Journal of Water and Soil. 27(1), pp. 123-130. (In Persian)

 

  • Jafari Talukolaee M., Shahnazari,  M.Z. Ahmadi,  D. Kalantari. 2017. Prediction of water table dynamics between bi-level subsurface drains in paddy fields. Iranian Journal of Irrigation and Drainage. 6(10), pp. 837-848. (In Persian)

 

  • Jihad-Agriculture Ministry. 2019. Iran’s Agriculture Statistical Year Book. 1st part, agronomy statistics. 95 pp. (In Persian)

 

  • Jing, Q., van Keulen, H. and Hengsdijk, H. 2010. Modeling biomass, nitrogen and water dynamics in rice–wheat rotations. Agricultural Systems. 103, pp. 433–443. Doi:

10.1016/j.agsy.2010.04.001.

 

  • Kacimov, A.R. 2000. Comment on the paper “An analytical solution for design of bi-level drainage systems” by A.K. Verma, S.K. Gupta, K.K. Singh, and H.S. Chauhan. Agricultural Water Management. 46, pp. 193-200.

 

  • Kraijenhoff Van De Leur, D.A. 1958. A study of non-steady groundwater flow with special reference to a reservoir coefficient. De Ingenieur, 40, pp. 87-94.

 

  • Kumar, R., Bhakar, S.R., Singh, P.K. 2013. Evaluation of hydraulics characteristics and management strategies of subsurface drainage system in Indira Gandhi Canal Command. Agriculture Engineering International: CIGR Journal. 15(2), pp. 1-9.

 

  • Liang, X.Q., Chen, Y.X., Li, H., Tian, G.M., Ni, W.Z., He, M.M. and Zhang, Z.J. 2007. Modeling transport and fate of nitrogen from urea applied to a near-trench paddy field. Environmental Pollution Journal. 150, pp. 313-320. Doi: 10.1016/j.envpol.2007.02.003.

 

  • Matsushima, S. 1970. Crop Science in Rice: Theory of yield determination and its application. Tokyo: Fuji Publishing Co. Ltd.

 

  • Mishra, G.C. and Singh, V. 2007. A new drain spacing formula. Journal of Hydrological Science. 52, pp. 338–351. Doi: 10.1623/hysj.52.2.338.

 

  • Nash, J.E. and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models-Part 1: A discussion of principles. Journal of Hydrology. 10, pp. 282-290. Doi: 10.1016/0022-1694(70)90255-6.

 

  • Nguyen, D.B. 2007. Irrigation of Paddy Fields in Mekong Delta. Materials, reports and documents of Department of Water Resources, Hanoi Agriculture University, Hanoi, Vietnam.

 

  • Ogino, Y. and Murashima, K. 1992. Planning and design of subsurface drainage for paddies in Japan. Paper presented at 5th International Drainage workshop. Feb. 8–15, Lahore, Pakistan. Organizer: ICID.

 

  • Okamoto, M. 1997. Drainage in Japan. Country report in the 7th Drainage Workshop. Drainage for the 21st Century. 17–21 Nov. Pulau Pinang, Malaysia. Organizer: MANCID.

 

  • Oosterbaan, R.J. and Nijland, H.J. 1994. Determining the Saturated Hydraulic Conductivity. Chapter 12 in: H.P.Ritzema (Ed.), Drainage Principles and Applications. International Institute for Land Reclamation and Improvement (ILRI), Publication 16, second revised edition, 1994, Wageningen, The Netherlands.

 

  • Pali, A.K., Katre, P. and Khalkho, D. 2014. An Unsteady Subsurface Drainage Equation Incorporating Variability of Soil Drainage Properties. Water Resource Management. 28, pp. 2639 – 2653.

 

  • Ritzema, H.P. 1994. Drainage Principles and Applications. ILRI Publication 16, Second Edition (Completely Revised). The Netherlands. Chapter 8. pp. 263-304.

 

  • Skaggs, R.W., Kriz, G.J. and Bernal, R. 1973. Field Evaluation of Transient Drain Spacing Equations. Transactions of ASAE. pp. 590-595.

 

  • Singh, P.K., Singh, O.P., Jaiswal, C.S., Chauhan, H.S. 1999. Subsurface drainage of a three layered soil with slowly permeable top layer. Agricultural Water Management. 42, pp. 97-109.
  • Smedema, L.K. and Rycroft, D.W. 1983. Land drainage: planning and design of Agricultural Drainage Systems. Batsford, London, 376 p.

 

  • Toksoz, S. and Kirkham, D. 1971. Steady drainage of layered soils. Part I. Theory. Journal of Irrigation and Drain. Div., ASCE 97(1), pp. 1-18. Doi: 10.1061/JRCEA4.0000768.
  • Torabi, M. 2014. Field Evaluation of Drain Spacing Equations for Roodasht Region of Esfahan. Journal of Water Research in Agriculture. 28(3), pp. 635-644. (In Persian).