اصلاح اثرات ابرناکی بر محصول پوشش برف روزانه سنجنده مودیس (مطالعه موردی: شمال غرب ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب گروه علوم مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان.

2 استاد گروه علوم مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان

3 استادیار گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه بوعلی سینا، همدان.

چکیده

با توجه به دشواری تهیه داده‌های برف‌سنجی به‌صورت میدانی، سنجش از دور به‌عنوان یک راه‌حل سریع و مقرون به صرفه در تهیه این داده‌ها و ارائه آن‌ها به مدل‌های اقلیمی شناخته شده‌است. یکی از مشکلات استفاده از داده‌های ماهواره‌ای در برف‌سنجی، وجود ابر در این تصاویر است که موجب گسستگی زمانی-مکانی داده‌ها، و در نتیجه کاهش کارایی آن‌ها می‌شود. هدف از این تحقیق، ارائه چارچوب مناسبی برای حذف اثر ابر در تصاویر ماهواره‌ای و تولید داده‌های برف‌سنجی ماهواره‌ای بدون مزاحمت ابر است. بدین‌منظور با کمک داده‌های زمینی عمق برف، متوسط دما و بارش روزانه در ایستگاه‌های زمینی برف‌سنجی در حوضه آبریز دریاچه ارومیه و بخش غربی حوضه دریای مازندران، تصاویر روزانه MOD10A1 سنجنده مودیس در دو مرحله به‌صورت زمانی-مکانی مورد پردازش قرار گرفتند. نتایج مدل رگرسیون خطی چند متغیره نشان داد که مقادیر شاخص تفاضلی نرمال شده برف (NDSI) با داده‌های زمینی ایستگاه‌های برف‌سنجی موجود همبستگی بالا (047/0=RMSE و 85/0=r) دارد. بر همین اساس مناطق پوشیده شده با ابر در تصاویر مودیس با مقادیر حاصل از مدل جایگزین شدند. در مرحله دوم، با کمک روش‌های زمین آماری و با لحاظ کردن موقعیت مکانی هر پیکسل، مقادیر جدید NDSI محاسبه شد. با بررسی رابطه بین NDSI و میزان بارش تجمعی برف در بازه زمانی دی تا اسفند ماه سال 1397، مشخص شد که جایگزینی تصاویر ماهواره‌ای اولیه با تصاویر تصحیح شده موجب افزایش ضریب تببین (R2) از 63/0 به 81/0 شده است. این امر نشان‌دهنده بهبود دقت در برف‌سنجی ماهواره‌ای با استفاده از روش حاضر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The MODIS daily produces snow cover modification based on cloudy effects analysis (case study: northwest of Iran(

نویسندگان [English]

  • Razie Ebrahimi 1
  • Safar Marofi 2
  • Hossein Torabzadeh Khorasani 3
1 PhD candidate in Water Resources Engineering, Department of Water Science Engineering, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran.
2 Professor, Department of Water Science Engineering, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
3 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Bu Ali Sina University, Hamedan, Iran.
چکیده [English]

Remote sensing is a fast and cost-effective solution in preparing and presenting this data to climate models due to the difficulty of preparing snow meteorological data in the field. The presence of clouds is one of the problems of satellite images that cause temporal-spatial fragmentation of snow data and increase its resolution efficiency. This study aims to provide a suitable framework for removing the effect of clouds on satellite images and generating the satellite snow metering data without disturbing cloud effects. For this purpose, first, daily MOD10A1 images of the MODIS sensor products were refined (temporally and spatially) using local snow depth data, average temperature, and daily rainfall of the Lake Urmia catchment and western part of the Caspian Sea basin. A multivariate linear regression model application showed that the normalized snow differential index (NDSI) values correlate with existing snow metering station data (r= 0.85 and RMSE= 0.047). Accordingly, the cloud-covered areas in the MODIS images were replaced with the values obtained from the model. Then, new NDSI values were calculated using geostatistical methods and the location of each pixel's location. By examining the relationship between the NDSI and the cumulative snowfall from January to March 2016, it was found that replacing the primary satellite images with corrected images can increase the R2 from 0.63 to 0.81. Therefore the proposed methodology could improve the accuracy of satellite snow metering.

کلیدواژه‌ها [English]

  • Snow Metering
  • Local Stations
  • linear Regression
  • Satellite Image Correction
  • Spatio-Temporal Discontinuity
1- Adeli. A.. 2005. Climatology of Snowfall in Northwest of Iran (Doctoral dissertation, MSc Thesis, GIS Center and Remote Sensing, Tabriz University). (In Persian).
 
2- Adelzadeh. A.. 2015. Diagnostic of the temperature in Northwest Iran and its relationship with geopotential height. Journal of Applied Climatology, 2(2), 17-32. (In Persian).
 
3- Al-Hosseini Al-Madrasi. A.. Hatami. J.. Sarkargar. A.. 2016. Calculation of physical characteristics of snow using differential radar interferometric technique and TerraSAR-X and MODIS sensor images. Remote Sensing and Geographic Information System in Natural Resources. Volume 7, Number 2, Summer 2016, pp. 59-76. (In Persian).
 
4- Ansari, H. and Marofi, S., 2017. Streamflow Estimation in the Snowmelt Season Using Meteorological Factors (A Case Study: Lighvan Basin). Water and Soil Science27(3), pp.173-186. (In Persian).
 
5- Asakereh. H. and Seifipour. Z.. 2012. Spatial modeling of annual rainfall in Iran. Geography and Development, 10 (29 consecutive), pp.15-30. (In Persian).
 
6- Azizi. G.. Rahimi. M.. Mohammadi. H. and Khoshakhlagh. F.. 2017. Spatio-temporal variations of snow cover in the southern slope of central Alborz. Physical Geography Research Quarterly, 49(3), 381-393. Doi: 10.22059/JPHGR.2017.217393.1006943. (In Persian).
 
7- Brown. R.. Derksen. C. and Wang. L.. 2007. Assessment of spring snow cover duration variability over northern Canada from satellite datasets. Remote Sensing of Environment. 111, 367–381. Doi: 10.1016/j.rse.2006.09.035.
 
8- Ebrahimi. R.. Hamzeh. S. and Marofi. S.. 2016. Modeling the snow cover and snowmelt runoff using a combination of SRM hydrological model and satellite imagery. Irrigation and Water Engineering, 6(3), 66-77. (In Persian).
 
9- Gao. Y.. Xie. H.. Yao. T. and Xue. C.. 2010. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA. Remote Sensing of Environment, 114(8), 1662-1675. Doi: 10.1016/j.rse.2010.02.017.
 
10- Gao. Y.. Lu. N. and Yao. T.. 2011. Evaluation of a cloud-gap-filled MODIS daily snow cover product over the Pacific Northwest USA. Journal of Hydrology, 404(3-4), 157-165. Doi: 10.1016/j.jhydrol.2011.04.026.
 
11- Gerland. S.. Winther. J.G.. Orbak. J.B.. Liston. G.E.. Oritsland. N.E.. Blanco. A. and Ivanov. B.. 1999. Physical and Optical Properties of Snow Covering Arctic Tundra on Svalbard and Its Impact on Biota. International Conference on Snow Hydrology, US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 13(1999): pp.2331-2343. Doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2331::AID-HYP855>3.0.CO;2-W.
 
12- Ghanbarpour. M. R.. Mohseni. S. M.. Abbaspour. K.. Saghafian. B. and Ahmadi. H.. 2005. An evaluation of regions effective in accumulation and persistence of snow cover and snowmelt contribution in runoff. Natural Resources of Iran, 58 (3): pp. 503-515. (In Persian).
 
13- Ghojavand. K.. Taheri. S. H.. NasiriSaleh. F. and Habibi. N. M.. 2012. A new method for the forecasting of Spatial Distribution of Precipitation and Temperature in Gharehsoo River Watershed. (In Persian).
 
14- Hall. D.K.. Riggs. G.A. and Salomonson. V.V.. 1995. Development of methods for mapping global snow cover using Moderate ,Resolution Imaging Spectroradiometer (MODIS) data, Remote Sensing Environment, 54, 127-140. Doi: 10.1016/0034-4257(95)00137-P.
 
15- Hall. D.K.. Riggs. G.A.. Salomonson. V.V.. DiGirolamo. N.E. and Bayr. K.J.. 2002. MODIS snow-cover products, Remote Sensing of Environment, 83: pp. 181-194. Doi: 10.1016/S0034-4257(02)00095-0.
 
16- Hall. D. K.. Riggs. G. A.. Foster. J. L. and Kumar. S. V.. 2010. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote sensing of Environment, 114(3), 496-503. Doi: 10.1016/j.rse.2009.10.007.
 
17- Houborg. R.. Soegaard. H. and Boegh. E.. 2007. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sensing of Environment. 106 (1) 39–58. Doi: 10.1016/j.rse.2006.07.016.
 
18- Jensen. R.. Gatrell. J.. Boulton. J. and Harper. B.. 2004. Using remote sensing and geographic information systems to study urban quality of life and urban forest amenities. Ecology and Society, 9(5).
 
19- Jing. Y.. Shen. H.. Li. X. and Guan. X.. 2019. A two-stage fusion framework to generate a spatio–temporally continuous MODIS NDSI product over the Tibetan Plateau. Remote Sensing, 11(19), 2261. Doi: 10.3390/rs11192261.
 
20- Kuter. S.. Akyurek. Z. and Weber. G.W.. 2018. Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression spline, Remote Sensing of Environment 205 (2018) pp.236-252. Doi: 10.1016/j.rse.2017.11.021.
 
21- Lee. S.. Klein. A. G. and Over. T. M.. 2005. A comparison of MODIS and NOHRSC snow‐cover products for simulating streamflow using the Snowmelt Runoff Model. Hydrological Processes: An International Journal, 19(15), 2951-2972.
 
22- Liang. T.. Dong Huang. X.. Wu. C.. Liu. X.. Long Li. W.. Gang Guo. Z. and Ren. J.. 2008. An application of MODIS data to snow cover monitoring in a pastoral area: A case study in Northern Xinjiang, China. Remote Sensing of Environment 112 (2008). pp.1514–1526. Doi: 10.1016/j.rse.2007.06.001.
 
23- Li. X.. Fu. W.. Shen. H.. Huang. C. and Zhang. L.. 2017. Monitoring snow cover variability (2000–2014) in the Hengduan Mountains based on cloud-removed MODIS products with an adaptive spatio-temporal weighted method. Journal of hydrology, 551, 314-327. Doi: 10.1016/j.jhydrol.2017.05.049.
 
24- Lopez. P.. Sirguey. P. and Arnaud. Y.. 2008. Snow cover monitoring in the Northern Patagonia Icefield using MODIS satellite images (2000–2006). Global and Planetary Change 61, pp. 103–116. Doi: 10.1016/j.gloplacha.2007.07.005.
 
25- Marofi. S.. Tabari. H.. Zare Abyaneh. H.. Sharifi. M. R. and Akhoondali. A.. 2009. Zoning of snow water equivalent in an mountain subbasin of Karun using GIS, Case study, Samsami basin. Agricultural Sciences & Natural Resources, 16(3), 1-11. (In Persian).
 
26- Mirabassi. R. and Dinpazhooh. Y.. 2013. Trend analysis of precipitation of NW of Iran over the past half of the century. Irrigation Sciences and Engineering, 35(4), 59-73. (In Persian).
 
27- Parajka. J. and Blöschl. G.. 2006. Validation of MODIS snow cover images over Austria. Hydrology and Earth System Sciences10 (5), pp.679-689.
 
28- Pu. Z.X.. Xu. L. and Salomonson. V.. 2007. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophysical Research Letters 34, pp. 6706-1–6706-6.
 
29- Rayegani. B.. Khajeddin. S. J.. Soltani Kopaei. S. J. and Barati.. 2008. Calculation of changes in snow cover maps prepared from MODIS satellite images in periods without images. Journal of Soil and Water Sciences, 12(44), 315-332. (In Persian).
 
30- Rodell. M. and Houser. P.R.. 2004. Updating a land surface model with MODIS derived snow cover. Journal of Hydrometeorology 5, pp. 1064–1075.
 
31- Tabari. H.. Marofi. S.. Zare Abiane. H.. Amiri Chayjan. R.. Sharifi. M. and Akhondali. A. M.. 2010. Comparison of Non-Linear Regression and Computational Intelligence Methods in Estimating Spatial Distribution of Snow Water Equivalent in Karoon Upstream. JWSS-Isfahan University of Technology, 13(50), 29-40. Dor: 20.1001.1.24763594.1388.13.50.3.7. (In Persian).
 
32- Tekeli. A. E.. Akyürek. Z.. Şorman. A. A.. Şensoy. A. and Şorman. A. Ü.. 2005. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sensing of Environment, 97(2), 216-230. Doi: 10.1016/j.rse.2005.03.013.
 
33- Wang. X.. Xie. H. and Liang. T.. 2008. Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China. Remote Sensing of Environment. 112 (2008) 1497–1513. Doi: 10.1016/j.rse.2007.05.016.