نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشیار گروه علوم و مهندسی آب، دانشگاه بینالمللی امام خمینی (ره)، قزوین
2 دانشجوی دکتری گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران.
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Drought is one of the most destructive phenomena in the world, especially in Iran. The timely prediction of drought and its severity can make it easier to take the necessary measures to combat this phenomenon. Different methods have been proposed to predict droughts; however, what matters is which method can make the predictions more accurate. Many researchers have compared the CANFIS model with other models such as neural networks and linear regression Malik and Kumar (2020b); Malik et al(2020a); Malik et al (2019), but it has not been tested against the M5 tree model. In this study, CANFIS, M5, MLPNN and MLR models have been used to predict drought in Kermanshah synoptic station, to enhance the accuracy of drought prediction by using a variety of modeling methods in addition to the influential variables of the SPI index.
کلیدواژهها [English]