- Ahmadi, M.,Sharifi, A.,Dorosti, S.,Ghoushchi, S.J., Ghanbari, N., 2020. Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Science of the total environment, 729, pp. 138705. DOI: 10.1016/j.scitotenv.2020.138705.
- Aljanabi, Q.,Chik, Z.,Allawi, M.F.,El-Shafie, A.H.,Ahmed, A.N., El-Shafie, A., 2018. Support vector regression-based model for prediction of behavior stone column parameters in soft clay under highway embankment. Neural Computing and Applications, 30, pp. 2459-2469.
- Allawi, M.F.,Binti Othman, F.,Afan, H.A.,Ahmed, A.N.,Hossain, M.S.,Fai, C.M., El-Shafie, A., 2019. Reservoir evaporation prediction modeling based on artificial intelligence methods. Water, 11(6), pp. 1226. DOI: 10.3390/w11061226.
- Allen, R.G.,Pereira, L.S.,Howell, T.A., Jensen, M.E., 2011. Evapotranspiration information reporting: II. Recommended documentation. Agricultural Water Management, 98(6), pp. 921-929. DOI: 10.1016/j.agwat.2010.12.016.
- Arya Azar, N.,Ghordoyee Milan, S., Kayhomayoon, Z., 2021. Predicting monthly evaporation from dam reservoirs using LS-SVR and ANFIS optimized by Harris hawks optimization algorithm. Environmental Monitoring and Assessment, 193, pp. 1-14.
- Asadifard, E. and Masoudi, M., 2018. Status and prediction of carbon monoxide as an air pollutant in Ahvaz City, Iran. Caspian Journal of Environmental Sciences, 16(3), pp. 203-23. DOI: 10.22124/cjes.2018.3061.
- Baydaroğlu, Ö. and Koçak, K., 2014. SVR-based prediction of evaporation combined with chaotic approach. Journal of Hydrology, 508, pp. 356-363. DOI: 10.1016/j.jhydrol.2013.11.008.
- Chen, J.-L.,Yang, H.,Lv, M.-Q.,Xiao, Z.-L., Wu, S.J., 2019. Estimation of monthly pan evaporation using support vector machine in Three Gorges Reservoir Area, China. Theoretical and Applied Climatology, 138(1), pp. 1095-1107.
- El Bilali, A.,Abdeslam, T.,Ayoub, N.,Lamane, H.,Ezzaouini, M.A., Elbeltagi, A., 2023. An interpretable machine learning approach based on DNN, SVR, Extra Tree, and XGBoost models for predicting daily pan evaporation. Journal of Environmental Management, 327, pp. 116890. DOI: 10.1016/j.jenvman.2022.116890.
- Eslamian, S. and Eslamian, F., 2022. Handbook of HydroInformatics: Volume I: Classic Soft-Computing Techniques. Elsevier.
- Ghumman, A.R.,Jamaan, M.,Ahmad, A.,Shafiquzzaman, M.,Haider, H.,Al Salamah, I.S., Ghazaw, Y.M., 2021. Simulation of pan-evaporation using penman and hamon equations and artificial intelligence techniques. Water, 13(6), 793. DOI: 10.3390/w13060793.
- Guan, Y.,Mohammadi, B.,Pham, Q.,Adarsh, S.,Balkhair, K.S.,Rahman, K.U.,Linh, N.T.T., Tri, D.Q., 2020. A novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm model. Theoretical and Applied Climatology, 142, pp. 349-367.
- Huang, G.,Wu, L.,Ma, X.,Zhang, W.,Fan, J.,Yu, X.,Zeng, W., Zhou, H., 2019. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, pp. 1029-1041. DOI: 10.1016/j.jhydrol.2019.04.085.
- Jha, S.K. and Hayashi, K., 2014. A novel odor filtering and sensing system combined with regression analysis for chemical vapor quantification. Sensors and Actuators B: Chemical, 200, pp. 269-287. DOI: 10.1016/j.snb.2014.04.022.
- Kisi, O.,Genc, O.,Dinc, S., Zounemat-Kermani, M., 2016. Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Computers and Electronics in Agriculture, 122, pp. 112-117. DOI: 10.1016/j.compag.2016.01.026.
- Kumar, P. and Singh, A.K., 2022. A comparison between MLR, MARS, SVR and RF techniques: hydrological time-series modeling. Journal of Human, Earth, and Future, 3(1), pp. 90-98. DOI: 10.28991/HEF-2022-03-01-07.
- Malik, A.,Tikhamarine, Y.,Al-Ansari, N.,Shahid, S.,Sekhon, H.S.,Pal, R.K.,Rai, P.,Pandey, K.,Singh, P., Elbeltagi, A., 2021. Daily pan-evaporation estimation in different agro-climatic zones using novel hybrid support vector regression optimized by Salp swarm algorithm in conjunction with gamma test. Engineering Applications of Computational Fluid Mechanics, 15(1), pp. 1075-1094. DOI: 10.1080/19942060.2021.1942990.
- Mashaly, A.F. and Fernald, A.G., 2020. Identifying capabilities and potentials of system dynamics in hydrology and water resources as a promising modeling approach for water management. Water, 12(5), pp. 1432. DOI: 10.3390/w12051432.
- Mirzania, E.,Vishwakarma, D.K.,Bui, Q.-A.T.,Band, S.S., Dehghani, R., 2023. A novel hybrid AIG-SVR model for estimating daily reference evapotranspiration. Arabian Journal of Geosciences, 16(5), pp. 1-14.
- Pan, W.-T., 2012. A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Systems, 26, pp. 69-74. DOI: 10.1016/j.knosys.2011.07.001.
- Poluru, R.K. and Kumar R, L., 2021. An Improved Fruit Fly Optimization (IFFOA) based Cluster Head Selection Algorithm for Internet of Things. International Journal of Computers and Applications, 43(7), pp. 623-631. DOI: 10.1080/1206212X.2019.1600831.
- Ruiming, F. and Shijie, S., 2020. Daily reference evapotranspiration prediction of Tieguanyin tea plants based on mathematical morphology clustering and improved generalized regression neural network. Agricultural Water Management, 236, pp. 106177. DOI: 10.1016/j.agwat.2020.106177.
- Saltelli, A.,Aleksankina, K.,Becker, W.,Fennell, P.,Ferretti, F.,Holst, N.,Li, S., Wu, Q., 2019. Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental modelling & software, 114, pp. 29-39. DOI: 1016/j.envsoft.2019.01.012.
- Samadianfard, S.,Jarhan, S.,Salwana, E.,Mosavi, A.,Shamshirband, S., Akib, S., 2019. Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin. Water, 11(9), pp. 1934. DOI: 3390/w11091934.
- Sattari, M.T.,Feizi, H.,Samadianfard, S.,Falsafian, , Salwana, E., 2021. Estimation of monthly and seasonal precipitation: A comparative study using data-driven methods versus hybrid approach. Measurement, 173, pp. 108512. DOI: 10.1016/j.measurement.2020.108512.
- Shabani, S.,Samadianfard, S.,Sattari, M.T.,Mosavi, A.,Shamshirband, S.,Kmet, T., Várkonyi-Kóczy, A.R., 2020. Modeling pan evaporation using Gaussian process regression K-nearest neighbors random forest and support vector machines; comparative analysis. Atmosphere, 11(1), pp. 66. DOI: 3390/atmos11010066.
- Shan, D.,Cao, G., Dong, H., 2013. LGMS-FOA: an improved fruit fly optimization algorithm for solving optimization problems. Mathematical problems in engineering, 2013, pp. DOI: 1155/2013/108768
- Sun, X.,Bi, Y.,Karami, H.,Naini, S.,Band, S.S., Mosavi, A., 2021a. Hybrid model of support vector regression and fruitfly optimization algorithm for predicting ski-jump spillway scour geometry. Engineering Applications of Computational Fluid Mechanics, 15(1), pp. 272-291. DOI: 1080/19942060.2020.1869102
29- Sun, Z.,Zhu, G.,Zhang, Z.,Xu, Y.,Yong, L.,Wan, Q.,Ma, H.,Sang, L., Liu, Y., 2021b. Identifying surface water evaporation loss of inland river basin based on evaporation enrichment model. Hydrological Processes, 35(3), pp. e14093. DOI: 10.1002/hyp.14093.
30- Tikhamarine, Y.,Malik, A.,Pandey, K.,Sammen, S.S.,Souag-Gamane, D.,Heddam, S., Kisi, O., 2020. Monthly evapotranspiration estimation using optimal climatic parameters: efficacy of hybrid support vector regression integrated with whale optimization algorithm. Environmental Monitoring and Assessment, 192, pp. 1-19.
31- Vapnik, V. and Chervonenkis, A., 1974. Theory of pattern recognition. Nauka, Moscow, pp.
32- Wanniarachchi, S. and Sarukkalige, R., 2022. A review on evapotranspiration estimation in agricultural water management: Past, present, and future. Hydrology, 9(7), pp. 123. DOI: 10.3390/hydrology9070123.
33- Wu, J.,Wang, Y.-G.,Burrage, K.,Tian, Y.-C.,Lawson, B., Ding, Z., 2020. An improved firefly algorithm for global continuous optimization problems. Expert Systems with Applications, 149, pp. 113340. DOI: 10.1016/j.eswa.2020.113340.
34- Yan, Z.,Wang, S.,Ma, D.,Liu, B.,Lin, H., Li, S., 2019. Meteorological factors affecting pan evaporation in the Haihe River Basin, China. Water, 11(2), pp. 317. DOI: 10.3390/w11020317.
35- Yoon, H.,Jun, S.-C.,Hyun, Y.,Bae, G.-O., Lee, K.-K., 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of hydrology, 396(1-2), pp. 128-138. DOI: 10.1016/j.jhydrol.2010.11.002.