مدل‏سازی عددی پدیده های دینامیکی افت غیرماندگار و اثرات ویسکوالاستیک در خطوط لوله تحت جریان گذرا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری سازه های آبی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران، اهواز

2 استاد گروه سازه‌های آبی دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز

3 دانشیار گروه مهندسی عمران، دانشکده مهندسی ، دانشگاه شهید چمران، اهواز، ایران.

چکیده

رفتار ویسکوالاستیک لوله­های پلیمری در مرحله طراحی و هم‏چنین برای تحلیل سیگنال ضربه­قوچ با اهداف تشخیصی، باید در نظر گرفته شود. تحقیق حاضر به معرفی و مدل­سازی اثرات دینامیکی افت غیرماندگار و ویسکوالاستیک دیواره لوله­های پلیمری رایج در کارهای آبرسانی، در جریان­های گذرا می­پردازد. بر این اساس معادله‏های سازگاری بر اساس افت غیرماندگار و خواص ویسکوالاستیک دیواره لوله بازنویسی شده و با به­کارگیری روش خطوط مشخصه در ترکیب با تفاضل محدود تحلیل می­شوند. برای واسنجی پارامترهای مجهول نظیر ضرایب افت و خزش و صحت­سنجی مدل عددی توسعه یافته، از داده­های یک مدل آزمایشگاهی استفاده شد. با به­ کارگیری روش تحلیل معکوس جریان گذرا و استفاده از الگوریتم ژنتیک، پارامترهای مجهول مسئله محاسبه می­شوند. نتایج نشان می­دهد که مدل­های کلاسیک ضربه قوچ قادر به شبیه­سازی نوسانات فشار در لوله­های پلیمری نمی­باشند. هم‏چنین اثرات ویسکوالاستیک نقش بسیار مهم­تری نسبت به افت غیرماندگار در شکل­گیری سیگنال­های ضربه قوچ بازی می­کنند، تاجایی که در نظر گرفتن آن به­تنهایی می­تواند به پاسخ­های قابل قبولی منتج شود.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Simulation of Dynamic Phenomena of Unsteady Friction and Viscoelastic Effects in Pipeline under the Transient Flow

نویسندگان [English]

  • Mostafa Rahmanshahi 1
  • Manoochehr Fathi-Moghadam 2
  • Ali Haghighi 3
1 PhD Graduated of Hydraulic Structures, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran.
2 Professor of Hydraulic Structures, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran.
3 Associate Professor of Civil Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Iran.
چکیده [English]

     Plastic pipes are widely used in pressurized water systems. The analysis of transient flow and estimation of maximum and minimum pressure wave propagation in pipeline and pipe networks is required for design and practice of piping systems, pumping stations, and dam water conveyance tunnels. The viscoelastic properties of the polyethylene pipes have significant effect on the estimation of pressure wave speed and attenuation in transient flow. The use of polymeric pipes such as polyethylene and polyvinyl chloride has recently increased due to their technical and economic advantages over steel and concrete pipes. Due to viscoelastic behavior, polymeric pipes have a significant impact on transient flows (Pezzinga, 2002). In a fast transient flow event like water hammer, viscoelastic properties of polymeric materials cause a residual stress in the pipe wall. These deformations will not return to their original state immediately after unloading (Covas, 2003). This viscoelastic behavior also affects the intensity, shape, and dampening of pressure oscillation in transient flows.
Covas (2003) developed a numerical model to simulate the viscoelastic behavior of the pipe wall in transient flow events. In this study, the results of a linear viscoelastic model were compared with experimental results in the presence and absence of unsteady friction loss. Soares et al., (2008) also considered transient flow in PVC pipes, and their results were in good agreement with those obtained by Ramos et al. (2004). Evangelista et al., (2015) studied water hammer phenomenon in a Y-shaped system both experimentally and numerically. According to their results, the linear viscoelastic model was able to simulate the water hammer phenomenon in this system.
The present research deals with the introduction and simulation of dynamic effects, including unsteady friction and pipe-wall viscoelastic in transient flows in polymeric pipes that widely used in water works. Accordingly, the governing equations are rewritten and manipulated for considering the unsteady friction and viscoelastic properties. The equations are then solved using the method of characteristics coupled with the finite difference method. Appling the inverse transient analysis method and with the aid of a genetic algorithm, the unknown parameters are determined. Steady state friction coefficients have to be estimated based on steady state data and other unknown parameters were calibrated based on the transient flow.

کلیدواژه‌ها [English]

  • Transient flow
  • Viscoelastic pipeline
  • Unsteady friction
  • Numerical model
  • Invers solution
1-  Aklonis, J.J., MacKnight, W.J. and Shen, M., 1972. Introduction to Polymer Viscoelasticity. John Wiley & Sons, Inc., NewYork. The dynamic effect of pipe-wall viscoelasticity. Part II69.
 
2-  Axworthy, D.H., 1997. Water Distribution Networks Modelling: from Steady-state to Waterhammer. PhD, University of Toronto, Toronto, Canada.
 
3-  Bergant, A., Simpson, A.R. and Vitkovsky, J.P., 2001. Developments in Unsteady Pipe Flow Friction Modelling. Journal of Hydraulic Research, IAHR, 39(3), pp.249–257.
 
4-  Bratland, O., 1986. Frequency-Dependent Friction and Radial Kinetic Energy Variation in Transient Pipe Flows. Proceedings of 5th International Conference on Pressure Surges. BHR Group Ltd., Hanover, Germany, pp.95–101.
 
5-  Brunone, B., 1999. Transient Test-Based Technique for Leak Detection in Outfall pipes. Journal of Water Resources Planning and Management, ASCE, 125(5), pp.302-306.
 
6-  Brunone, B., Golia, U.M. and Greco, M., 1991. Some Remarks on the Momentum Equation for Fast Transients. Proceeding of the International Conference on Hydraulic Transients with Water Column Separation (9th and Last Round Table of IAHR Group), Valencia, Spain, pp.201–209.
 
7-  Brunone, B., Golia, U.M. and Greco, M., 1995. Effects of Two-Dimensionality on Pipe Transients Modelling. Journal of Hydraulic Engineering, ASCE. 121(12), pp.906-912.
 
8-  Brunone, B., Karney, B. and Ferrante, M., 1999. Velocity Profiles, Unsteady Friction Losses and Transient Modelling. 26th Water Resources Planning and Management Conference, ASCE, Tempe, Arizona.
 
9-  Brunone, B., Karney, B., Mercarelli, M. and Ferrante, M., 2000. Velocity Profiles and Unsteady Pipe Friction in Transient Flow. Journal of Water Resources Planning and Management, ASCE 126(4), pp.236–244.
10- Carstens, M.R. and Roller, J.E., 1959. Boundary-Shear Stress in Unsteady Turbulent Pipe Flow. Journal of Hydraulic Deviation, ASCE, 85(HY2), pp.67–81.
 
11- Chaudhry, M.H., 1987. Applied Hydraulic Transients. Second edition Van Nostrand Reinhold Co., New York.
 
12- Covas, D. and Ramos, H., 2010. Case studies of leak detection and location in water pipe systems by inverse transient analysis. Journal of Water Resources Planning and Management, ASCE, 136(2), pp.248-257.
 
13- Covas, D., 2003. Inverse Transient Analysis For leak Detection and Calibration of Water Pipe Systems Modeling Special Dynamic Effects. PhD, University of Imperial College, Landon, UK.
 
14- Daily, J.W., Hankey, Jr.W.L., Olive, R.W. and Jordan, Jr.J.M., 1956. Resistance Coefficients for Accelerated and Decelerated Flows Through Smooth Tubes and Orifices. Journal of Basic Engineering, Trans, ASME, Ser. D 78(7), pp.1071–1077.
 
15- Eichinger, P. and Lein, G., 1992. The Influence of Friction on Unsteady Pipe Flow. Proceedings of the International Conference on Unsteady Flow and Fluid Transients. Bettess & Watts, Balkema, Rotterdam, pp.41–50
 
16- Evangelista, S., Leopardi, A., Pignatelli, R. and Marinis, G., 2015. Hydraulic Transients in Viscoelastic Branched Pipelines. Journal of Hydraulic Engineering, ASCE, 141(8), pp.1-9.
 
17- Fox, G.L.Jr. and Stepnewski, D., 1974. Pressure Wave Transmission in a Fluid Contained in a Plastically Deforming Pipe. Journal of Pressure Vessel Technology, Trans. ASME, pp.258-262.
 
18- Hino, M., Sawamoto, M. and Takasu, S., 1976. Experiments on Transition to Turbulence in an Oscillatory Pipe Flow. Journal of Fluid Mechanics, 75(2), pp.193–207.
 
19- Hino, M., Sawamoto, M. and Takasu, S., 1977. Study on the Transition to Turbulence and Frictional Coefficient in an Oscillatory Pipe Flow. Trans. JSCE 9, pp.282–285.
 
20- Keramat, A., Ahmadi, A. and Majd, A., 2009. Transient caveating pipe flow due to a pump failure. Proceedings of the 3rd IAHR International Meeting of the Work Group on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Brno, Czech Republic.
 
21- Liggett, J.A. and Chen, L.C., 1994. Inverse transient analysis in pipe networks. Journal of Hydraulic Engineering, ASCE, 120(8), pp.934-955.
 
22- MeiBner, E. and Franke, G., 1977. Influence of Pipe Material on the Dampening of Waterhammer: Proceedings of the 17th Congress of the International Association for Hydraulic Research, Pub. IAHR, Baden-Baden, F.R. Germany.
 
23- Mitosek, M. and Roszkowski, A., 1998. Empirical Study of waterhammer in plastic pipes. Plastics, Rubber and Composites Processing and Applications, 27(7), pp.36-439.
 
24- Pezzinga, G., 1999. Quasi-2D Model for Unsteady Flow in Pipe Networks. Journal of Hydraulic Engineering, ASCE, 125(7), pp.676–685.
 
25- Pezzinga, G., 2000. Evaluation of Unsteady Flow Resistances by Quasi-2D and 1D Models. Journal of Hydraulic Engineering, ASCE, 126(10), pp.778–785.
 
26- Safwat, H. and Polder, J., 1973. Friction-Frequency Dependence for Oscillatory Flows in Circular Pipes. Journal of Hydraulic Deviation, ASCE, HY11, November, pp.1933–1945.
 
27- Shuy, E.B., 1996. Wall Shear Stress in Accelerating and Decelerating Turbulent Pipe Flows. Journal of Hydraulic Research, IAHR, 34(2), pp.173-183.
 
28- Silva-Araya, W.F. and Chaudhry, M.H., 1997. Computation of Energy Dissipation in Transient Flow. Journal of Hydraulic Engineering, ASCE, 123(2), pp.108–115.
 
29- Soares, A.K., Covas, D. and Ramos, H., 2009. Transient flow in viscoelastic pipes with cavitation. Proceedings of the 3rd IAHR International Meeting of the Work Group on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Brno, Czech Republic, October 2009.
 
30- Soares, A.K., Covas, D. and Reis, F.R., 2008. Analysis of PVC pipe-wall viscoelasticity during water hammer. Journal of Hydraulic Engineering, ASCE, 134(9), pp.1389-1394.
 
31- Streeter, V.L., 1971. Fluid Mechanics (5th Edition). McGraw-Hill.
 
32- Suzuki, K., Taketomi, T. and Sato, S., 1991. Improving Zielke’s Method of Simulating Frequency-Dependent Friction in Laminar Liquid Pipe Flow. Journal of Fluid Engineering, Trans. ASME, 113(4), pp.569–573.
 
33- Trikha, A.K., 1975. An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow. Journal of Fluid Engineering, Trans. ASME, 97(1), pp.97–105.
 
34- Vardy, A.E., 1992. Approximating Unsteady Friction at High Reynolds Numbers. In: Bettess and Watts (eds). Proceedings of the International Conference on Unsteady Flow and Fluid Transients. Balkema, Rotterdam, pp.21–29.
 
35- Vardy, A.E. and Brown, J., 1995. Transient, Turbulent, Smooth Pipe Friction. Journal of Hydraulic Research, IAHR, 33(4), pp.435–456.
 
36- Vardy, A.E. and Brown, J., 1996. On Turbulent, Unsteady, Smooth-Pipe Friction. Proceedings of the 7th International Conference on Pressure Surges and Fluid Transients in Pipelines and Open Channels. BHR Group Ltd., Harrogate, UK, pp. 289–311.
 
37- Vardy, A.E. and Hwang, K.L., 1991. A Characteristic Model of Transient Friction in Pipes. Journal of Hydraulic Research, IAHR, 29(5), pp.669–684.
 
38- Vardy, A.E., Hwang, K.L. and Brown, J., 1993. A Weighting Function Model of Transient Turbulent Pipe Friction. Journal of Hydraulic Research, IAHR, 31(4), pp.533–548.
 
39- Vitkovsky, J.P., Lambert, M.F. and Simpson, A.R., 2000. Advances in Unsteady Friction Modelling in Transient Pipe Flow. Proceedings of the 8th International Conference on Pressure Surges. BHR Group Ltd., The Hague, The Netherlands, pp.471–498.
 
40- White, F.M., 1999. Fluid mechanics, 4th edn, WCB.
 
41- Williams, D.J., 1977. Waterhammer in non-rigid pipes: precursor waves and mechanical damping. Journal of Mechanical Engineering Science, 19(6), pp.237-242.
 
42- Zielke, W., 1968. Frequency-Dependent Friction in Transient Pipe Flow. Journal of Basic Engineering, Trans. ASME, Ser. D 90(1), pp.109–115.