بررسی اثر کود نیتروژن روی پارامترهای رشد محصول ذرت (سینگل کراس 704) برای مدل آکواکراپ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی آبیاری زهکشی، دانشگاه تهران.

2 استاد گروه مهندسی آبیاری و زهکشی، پردیس ابوریحان، دانشگاه تهران

3 دانشیار گروه مهندسی آبیاری و زهکشی، پردیس ابوریحان، دانشگاه تهران.

چکیده

کود نیتروژن بر روی پارامترهای رشد و در نهایت عملکرد محصول اثر می­گذارد. شناخت این اثر برای مدیریت مصرف کود  مهم می­باشد. فرضیه این پژوهش آن است که کود نیتروژن روی چهار پارامتر رشد محصول ذرت از قبیل بهره­وری آب نرمال شده (WP*)، حداکثر پوشش گیاه(CCx)، نرخ رشد پوشش گیاه (CGC) و نرخ کاهش پوشش گیاه (CDC)اثر می­گذارد. این چهار پارامتر، ورودی­های مدل آکواکراپ هستند.هدف نخست این پژوهش تعیین معادله­ها بین کود نیتروژن و چهار پارامتر فوق و هدف دوم بررسی دقت مدل آکواکراپ برای شبیه­سازی پاسخ محصول ذرت به کود نیتروژن با استفاده از پارامترهای به­دست آمده از هدف نخست است. بدین منظور گیاه ذرت رقم اصلاح­شده سینگل کراس 704 طی دو سال زراعی 1394 و 1395 بدون تنش رطوبتی کشت شد. تیمارها با ششسطح کودی از صفر  تا 300 کیلوگرم در هکتار اجرا شدند. داده­های سال اول برای تدوین معادله­ها و داده­های سال دوم برای صحت­سنجی استفاده شدند. نتایج نشان داد تغییرات چهار پارامتر فوق با مقدار کود مصرفی از معادله درجه دو با ضریب تعیین بالایی پیروی می­کند. نتایج برآورد پارامترهای فوق برای تیمارهای کودی سال دوم در مدل آکواکرپ برای شبیه­سازی زیست توده استفاده شد. نتایج نشان داد، معادله­های بنیان شده می­تواند برای برآورد اثر تنش کود ازت بر پارامترهای رشد ذرت در مدل آکواکراپ مورد استفاده قرار گیرد. ضریب تعیین و جذر میانگین مربعات خطا به­ترتیب بالای 97/0 و کمتر از 12درصد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation the Effect of Nitrogen Fertilizer on Maize Yield Parameters (single cross hybrid 704) for AquaCrop Model

نویسندگان [English]

  • Omid Mirzaee 1
  • Ali Rahimikhoob 2
  • Maryam Varavipour 3
1 Master Science Student of Irrigation and drainage Eng. Department of Irrigation and drainage Engineering, Aburaihan College, University of Tehran.
2 Professor, Department of Irrigation and drainage Engineering, Aburaihan College, University of Tehran
3 Associate Professor, Department of Irrigation and drainage Engineering, Aburaihan College, University of Tehran, Iran
چکیده [English]

Water and nitrogen are two main factors of plant production. Water scarcity is one of the most important challenges in the production of agricultural products in arid and semi-arid regions, as in most parts of Iran. A great deal of research has been done on the interaction between water and nitrogen and has shown that irrigation and nitrogen treatments interact with the yield. So far, various models have been developed to simulate plant performance in response to different levels of water and nitrogen. The FAO organization has provided the AquaCrop model. This model simulates yield performance in response to water consumption. The effect of nitrogen deficiency on yield in the latest versions of the AquaCrop model (versions 4 and 5) is carried out using semi-quantitative method. In this method, nitrogen deficiency is assumed to be based on four parameters: 1- Normalized water productivity (WP*), 2- maximum canopy cover (CCx), 3- The Canopy growth coefficient (CGC) and 4- Canopy decline coefficient (CDC). The hypothesis of this research is that there is a relationship between the four above parameters and nitrogen fertilizer for corn, and from them, we can determine the values of four parameters for each fertilizer level and use them in the AquaCrop model. Therefore, the first goal of this study was to determine the equations between nitrogen fertilizer and the four above parameters. The second goal of this study was to evaluate the accuracy of the AquaCrop model for simulating the response of corn to nitrogen fertilizer using parameters derived from the equations defined in the first part.

کلیدواژه‌ها [English]

  • Crop Yield
  • Simulation
  • Normalized Water Productivity
  • Maximum Canopy Cover
  • Canopy Growth Coefficient
1-Ali, M.H., Hoque, M.R., Hassan, A. and Khair, A., 2007. Effects of deficit irrigation on yield, water productivity, and economic returns of wheat. Agricultural Water Management, 92(3), pp.151-161.
2- Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome.
3- Angus, J.F., 2001. Nitrogen supply and demand in Australian agriculture. Animal Production Science, 41(3), pp. 277-288.
4-Araya, A., Habtu, S., Hadgu, K.M., Kebede, A. and Dejene, T., 2010. Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management, 97(11), pp.1838-1846.
5-Boogaard, H.L., De Wit, A.J.W., Roller, J.A. and Van Diepen, C. A., 2014. WOFOST CONTROL CENTRE 2.1; User’s guide for the WOFOST CONTROL CENTRE 2.1 and the crop growth simulation model WOFOST 7.1.7. Wageningen (Netherlands), Alterra, Wageningen University & Research Centre.
6-Eickhout, B., Bouwman, A.V. and Van Zeijts, H., 2006. The role of nitrogen in world food production and environmental sustainability. Agriculture, Ecosystems & Environment, 116(1), pp.4-14.
7-Farahani, H.J., Izzi, G. and Oweis, T.Y., 2009. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy Journal, 101(3), pp.469-476.
8- Geerts, S. and Raes, D., 2009. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, 96(9), pp.1275-1284.
9- Geerts, S., Raes, D., Garcia, M., Condori, O., Mamani, J., Miranda, R., Cusicanqui, J., Taboada, C., Yucra, E. and Vacher, J., 2008. Could deficit irrigation be a sustainable practice for quinoa (Chenopodium quinoa Willd.) in the Southern Bolivian Altiplano?. Agricultural Water Management, 95(8), pp.909-917.
10- Hsiao, T.C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D. and Fereres, E., 2009. AquaCrop—the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101(3), pp.448-459.
11- Igbadun, H.E., Salim, B.A., Tarimo, A.K. and H.F. Mahoo. 2008. Effects of deficit irrigation scheduling on yields and soil water balance of irrigated maize. Irrigation Science. 27(1):11-23.
12- Jones, C.A., Kiniry, J.R. and Dyke, P.T., 1986. CERES-Maize: A simulation model of maize growth and development. Texas A&M University Press.
13- Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J. and Ritchie, J.T., 2003. The DSSAT cropping system model. European Journal of Agronomy, 18(3), pp.235-265.
14- Kang, S., Shi, W. and Zhang, J., 2000. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Research, 67(3), pp.207-214.
15- Liu, C.W., Sung, Y., Chen, B.C. and Lai, H.Y., 2014. Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.). International Journal of Environmental Research and Public Health, 11(4), pp.4427-4440.
16- Mousavizadeh, S.F., Honar, T. and Ahmadi, S.H., 2016. Assessment of the AquaCrop Model for simulating Canola under different irrigation managements in a semiarid area. International Journal of Plant Production, 10(4), pp.425-446.
17- Patrignani, A. and Ochsner, T.E., 2015. Canopeo: A powerful new tool for measuring fractional green canopy cover. Agronomy Journal, 107(6), pp.2312-2320.
18- Raes, D., Steduto, P., Hsiao, T.C. and Fereres, E., 2009. AquaCrop the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101(3), pp.438-447.
19- Steduto, P., Hsiao, T.C. and Fereres, E., 2007. On the conservative behavior of biomass water productivity. Irrigation Science, 25(3), pp.189-207.
20- Steduto, P., Hsiao, T.C., Raes, D. and Fereres, E., 2009. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101(3), pp.426-437.
21 -Stöckle, C.O., Donatelli, M. and Nelson, R., 2003. CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18(3), pp.289-307.
22- Van Gaelen, H., Tsegay, A., Delbecque, N., Shrestha, N., Garcia, M., Fajardo, H., Miranda, R., Vanuytrecht, E., Abrha, B., Diels, J. and Raes, D., 2015. A semi-quantitative approach for modelling crop response to soil fertility: evaluation of the AquaCrop procedure. The Journal of Agricultural Science, 153(07), pp.1218-1233.