مقایسه تحلیل فراوانی منطقه‌ای تک متغیره و دو ‌متغیره مشخصه‌های خشک‌‌سالی‌‌ (مطالعه موردی: بخشی از اقلیم نیمه‌خشک در استان فارس)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده علوم‌کشاورزی و صنایع‌غذایی، گروه مهندسی سیستم‌های کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی.تهران.

2 استاد، دانشکده علوم‌کشاورزی و صنایع‌غذایی، گروه مهندسی سیستم‌های کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران.

3 استادیار گروه علوم و مهندسی‌آب، واحد شیراز،دانشگاه آزاد اسلامی، شیراز، ایران

4 استاد، دانشکده بخش مهندسی‌آب ،دانشکده‌کشاورزی شیراز.

چکیده

تحلیل خشک‌‌سالی‌‌ با توجه به تأثیرات قابل ملاحظه بر کشاورزی و منابع آب، از اهمیت زیادی برخوردار است. با توجه به همبستگی معنی‌دارمشخصه‌های خشک‌‌‌سالی هواشناسی با یک‌دیگر و وجود مناطق فاقد آمار، در این تحقیق یک تحلیل فراوانی منطقه‌ای دو‌متغیره در محدوده نیمه‌خشک استان فارس ارایه شده است.هدف اصلی این تحلیل آشکارسازی تاثیر وابستگی مشخصه‌های خشک‌‌سالی بر فراوانی وقوع و دوره بازگشت آن‌ها است. به‌منظور تحلیل فراوانی منطقه‌ای از روش خشک‌سالی‌‌ شاخص در ترکیب با روش گشتاورهای خطی استفاده گردیده و توزیع دو‌متغیره خصوصیات خشک‌‌سالی‌‌ برای مناطق همگن از طریق توابع مفصل تخمین زده شده است. نتایج نشان‌داد تابع گامبل مناسب‌ترین مفصل به‌منظور نشان‌دادن توزیع دو‌متغیره خشک‌‌سالی‌‌ در این منطقه می‌باشد. مقایسه دوره بازگشتیک‌متغیره و دو‌متغیرهمشخصه‌های منطقه‌ای خشک‌سالی نیز نشان می‌دهد، مقادیر شدت و مدت بدون بعد برای دوره بازگشت 100 ساله در حالت یک‌متغیره معادل 95/8 و 42/5 بوده و بر‌اساس توزیع دو‌متغیره، همین مقادیر در حالت (D ≥ 5/42 and S ≥ 8/95) دارای دوره بازگشت 195 سال و در شرایط (D ≥ 5/42 or S ≥ 8/95) دوره بازگشتی معادل 67 سال دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of univariate and bivariate regional frequency analysis of drought (case study: Part of semi-Arid climate of Fars Province)

نویسندگان [English]

  • Vahid Ghafori 1
  • Hosein Sedghi 2
  • Reza afshin Sharifan 3
  • Seyed Mohammad Jafar Nazemosadat 4
1 Department of Agricultural Systems Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Department of Agricultural Systems Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 Department of Water Resources Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
4 Department of Water Engineering, Faculty of Agriculture Shiraz University, Shiraz, Iran.
چکیده [English]

Drought is one of the most complex and destructive climatic phenomena, which can be perceived as the least understood natural disaster (Kao and Govindaraju, 2010). The most important and challenging characteristics of drought are frequency and return period (Bazrafshan et al., 2014; and Zhang et al. 2015). This complexity is derived from the interdependence of drought characteristics that make the univariate frequency analysis inefficient (Mirakbari et al., 2012). Therefore, instead of using traditional univariate analysis, a better approach is to derive the joint distribution of drought variables (Mishra and Singh 2010). Furthermore, insufficient data at the stations and the existence of ungagged areas necessitate regional analysis. Regional frequency analysis, on the one hand, provides the possibility of analysis for ungagged regions, and, on the other hand, provides better and more comprehensive information for meteorological stations using a combination of points and regional data. The main objective of this research is regional bivariate drought analysis in the semi-arid climate of Fars Province, Iran. In this regard, the index variable based on linear moments is one of the most advanced methods ( Núñez ez et al., 2011).

کلیدواژه‌ها [English]

  • Linear moments
  • Copula function
  • Return period
1-    Aissia, M Ben., Chebana, F., Ouarda, T.B., Bruneau, P. and Barbet, M., 2015. Bivariate index-flood model: case study in Québec, Canada. Hydrological Sciences Journal, 60(2), pp.247-268.
 
2-    Anonymous, 2016. Study center for Fars, Report of studies on groundwater levels for Fars regions. Technical Rep pp.69. (In Persian).
 
3-    Genest, C. and Favre, A.C., 2007. Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4), pp.347-368.
 
4-    Genest, C., Rémillard, B. and Beaudoin, D., 2009. Goodness-of-fit tests for copulas: a review and a power study. Mathematics And Economics, 44(2), pp.199-213.
 
5-    Genest, C. and Rivest, L.P., 1993. Statistical inference procedures for bivariate archimedean copulas. Journal of The American Statistical Association, 88(423), pp.1034-1043.
 
6-    Greenwood, J.A., Landwehr, J.M., Matalas, N.C. and Wallis, J.R., 1979. Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15(5), pp.1049-1054.
 
7-    Grimaldi, S., Kao, S.C., Castellarin, A., Papalexiou, S.M., Viglione, A., Laio, F., Aksoy, H. and Gedikli, A., 2011. Treatise on Water Science, chap. Statistical hydrology, 479–517.
 
8-    Guttman, N.B., 1993. The use of L-moments in the determination of regional precipitation climates. Journal of Climate, 6(12), pp.2309-2325.
 
9-    Hosking, J.R.M. and Wallis, J.R., 1988. The effect of intersite dependence on regional flood frequency analysis. Water Resources Research, 24(4), pp.588-600.
 
10- Hosking, J.R.M. and Wallis, J.R., 1993. Some statistics useful in regional frequency analysis. Water Resources Research, 29(2), pp.271-281.
 
11- Hosking, J.R., 1990. L-moments: analysis and estimation of distributions using linear combinations of order statistics. Journal of The Royal Statistical Society. Series B (Methodological), 52(1), pp.105-124.
 
12- Huang, S., Huang, Q., Chang, J., Chen, Y., Xing, L. and Xie, Y., 2015. Copulas-based drought evolution characteristics and risk evaluation in a typical arid and semi-arid region. Water Resources Management, 29(5), pp.1489-1503.
 
13- Janáček, J., 1994. Wilhite, DA: drought assessment, management and planning: Theory and case studies. Biologia Plantarum, 36(4), pp.628-628.
 
14- Kao, S.C. and Govindaraju, R.S., 2010. A copula-based joint deficit index for droughts. Journal of Hydrology, 380(1-2), pp.121-134.
 
15- Mathier, L., Perreault, L., Bobée, B. and Ashkar, F., 1992. The use of geometric and gamma-related distributions for frequency analysis of water deficit. Stochastic Hydrology and Hydraulics, 6(4), pp.239-254.
 
16- McKee, T.B., Doesken, N.J. and Kleist, J., 1993. The relationship of drought frequency and duration to time scales. The 8th Conference on Applied Climatology. Boston, MA: American Meteorological Society.
 
17- Mirakbari, M., Ganji, A. and Fallah, S.R., 2010. Regional bivariate frequency analysis of meteorological droughts. Journal of Hydrologic Engineering, 15(12), pp.985-1000.
 
18- Núñez, J.H., Verbist, K., Wallis, J.R., Schaefer, M.G., Morales, L. and Cornelis, W.M., 2011. Regional frequency analysis for mapping drought events in north-central Chile. Journal of Hydrology, 405(3-4), pp.352-366.
 
19- Salari, M., Akhond Ali, A., Adib, A. and Daneshkhah, A., 2014. Bivariate flood frequency analysis using the copula functions. Journal of Irrigation Science and Engineering, 37(4), pp. 29-38.(In Persian).
 
20- Schweizer, B. and Sklar, A., 1983 Probabilistic metric spaces,. Elsevier North Holland. New York.
 
 
21- Shafaei, M., Fakheri, A., Dinpashoh, Y. and Mirabbasi, R., 2016. Modeling rainfall event characteristics using D-vine copulas. Journal of Water and Soil Conservation, 6(2), pp. 45-58.(In Persian).
 
22- Shiau, J.T. and Modarres, R., 2009. Copula‐based drought severity‐duration‐frequency analysis in Iran. Meteorological Applications, 16(4), pp.481-489.
 
23- Shiau, J.T. and Shen, H.W., 2001. Recurrence analysis of hydrologic droughts of differing severity. Journal of Water Resources Planning and Management, 127(1), pp.30-40.
 
24- Shiau, J.T., 2006. Fitting drought duration and severity with two-dimensional copulas. Water Resources Management, 20(5), pp.795-815.
 
25- Sklar, M., 1959. Fonctions de Répartition À N Dimensions Et Leurs Marges. Université Paris
 
26- Svoboda, M., Hayes, M. and Wood, D., 2012. Standardized precipitation index user guide. Technical Rep.No. 1090
 
27- Wilhite, D.A., Hayes, m.j.,. and Knutson, cl. 2005. Drought preparedness planning: building institutional capacity. Drought and water crises: Science, Technology, And Management, 22(1), pp.93-135.
 
28- Xiong, L., Yu, K.X. and Gottschalk, L., 2014. Estimation of the distribution of annual runoff from climatic variables using copulas. Water Resources Research, 50(9), pp.7134-7152.
 
29- Zelenhasić, E. and Salvai, A., 1987. A method of streamflow drought analysis. Water Resources Research, 23(1), pp.156-168.
30- Zhang, Q., Xiao, M., Singh, V.P. and Li, J., 2012. Regionalization and spatial changing properties of droughts across the Pearl river basin, China. Journal of Hydrology, 472, pp.355-366.
 
31- Zhang, Q., Qi, T., Singh, V.P., Chen, Y.D. and Xiao, M., 2015. Regional frequency analysis of droughts in China: a multivariate perspective. Water Resources Management, 29(6), pp.1767-1787.