بررسی روش‌های انتگرال‌گیری زمانی در حل عددی معادله‌های دوبعدی آب‌های کم‌عمق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای گروه سازه‌های آبی دانشگاه تربیت مدرس.

2 استادیار گروه سازه‌های آبی دانشگاه تربیت مدرس

3 استاد گروه سازه‌های آبی دانشگاه تربیت مدرس.

چکیده

حل عددی معادله‌های دوبعدی جریان نیازمند گسسته‌سازی ترم‌های مکانی و زمانی است و با انتگرال‌گیری عددی از ترم‌های زمانی، به‌روزرسانی معادله‌ها انجام می‌شود. در راستای افزایش دقت و پایداری حل، بیش‌تر از روش‌های با دقت مرتبه دو برای انتگرال‌گیری زمانی ترم‌های معادله‌ها استفاده می‌شود. در این مطالعه دو روش متداول در انتگرال‌گیری زمانی شامل روش Runge-Kuttaمرتبه 3و روش تجزیه عملگر Strang، که دارای دقت مرتبه دو هستند موردبررسی قرارگرفته‌اند. برای داشتن قضاوتی صحیح از عملکرد این دو روش نسبت به هم، شیوه‌های عددی کاملاً یکسانی در برخورد با ترم‌های مکانی و ترم منبع‌های معادله به‌کار گرفته شد. سپس با استفاده از دو مدل به‌دست‌آمده که تنها روش برخورد با ترم‌های زمانی در آن‌ها متفاوت است، مسائل یک‌بعدی و دوبعدی دارای نتایج آزمایشگاهی یا حل تحلیلی اجرا شد. نتایج نشان می‌دهد که در مسائل یک‌بعدی با نوسان زیاد، روش رانگ کوتا مرتبه3 در ابتدا خطای کم‌تری داشته، اما با کاهش میزان نوسان، هر دو روش به دقت مشابهی خواهند رسید. در مسائل دوبعدی، پارامتر خطا در روش Strangبرای تکرارهای مختلف روند یکنواختی خواهد داشت. اما مقدار خطای روش رانگ کوتا مرتبه3 کم است که با تکرار محاسباتاندکی افزایش می‌یابد.  بااین‌وجود هر دو مدل، مسائل جریان یک و دوبعدی را به‌درستی مدلسازی کرده که به‌خوبی بیانگر چینش صحیح روش‌های به‌کاررفته در آن‌ها در برخورد با ترم‌های مکانی، زمانی و ترم منبع‌‌ها است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Time Integration Methods in the Numerical Solution of Two-Dimensional Shallow Water Equations

نویسندگان [English]

  • Morad Asadi 1
  • Mahdi Mazaheri 2
  • Jamal Mohamad Vali samani 3
1 Student of Department of Hydro-Structure, Faculty of Agriculture, Tarbiat Modares University of Tehran.
2 Assistant Professor of Department of Hydro-Structure, Faculty of Agriculture, Tarbiat Modares University of Tehran, Iran
3 Full Professor of Department of Hydro-Structure, Faculty of Agriculture, Tarbiat Modares University of Tehran.
چکیده [English]

The 2D shallow water equations are used in flow simulation of rivers, floodplains, coastal currents, etc. In the research, updating or the so-called numerical integration of temporal terms of two-dimensional equations using first-order methods is more stable but less accurate. In contrast, high-order accuracy methods have numerical stability problems and cause divergence (Brouwer et al., 2014). For this reason, second-order accurate methods with median properties are widely used. Despite much research on how to deal with spatial terms, according to a review by the authors, there is less research on how to deal with the temporal terms of equations. In addition, studies on time integration methods are limited to solving 1D problems. In this research, two different time integration methods of Runge-Kutta third order (RK-3 method) and Strang splitting operator method (Strang method), which have a second-order of accuracy and are commonly used in various research (Huang et al., 2013), have been investigated. Therefore, two models have been obtained in which the applied time integration methods are different, but the ways adopted to deal with spatial and sources terms of equations are same. Then, 1D and 2D reference problems are implemented using these two models and their results are presented in order to recognize the appropriate time integration method for solving 2D shallow water equations.

کلیدواژه‌ها [English]

  • 2D shallow water equations
  • Different time integration methods
  • Runge-Kutta third order method
  • Strang operator splitting method
1-       Ahmed, N. and John, V. 2015. Adaptive time step control for higher order variational time discretizations applied to convection–diffusion–reaction equations. Computer Methods in Applied Mechanics and Engineering, 285, 83-101.
 
2-       Amiri, S., Talebbeydokhti, N. and Baghlani, A. 2012. A two-dimensional well-balanced numerical model for shallow water equations. Scientia Iranica 20, 97-107.
 
3-       Aureli, F., Maranzoni, A., Mignosa, P. and Ziveri, C. 2008. A weighted surface-depth gradient method for the numerical integration of the 2D shallow water equations with topography. Advances in Water Resources, 31, 962-974.
 
4-       Brouwer, J., Reiss, J. and Sesterhenn, J. 2014. Conservative time integrators of arbitrary order for skew-symmetric finite-difference discretizations of compressible flow. Computers & Fluids 100, 1-12.
 
5-       Caleffi, V., Valiani, A. and Zanni, A. 2003. Finite volume method for simulating extreme flood events in natural channels. Journal of Hydraulic Research 41, 167-177.
 
6-       De Boer, A. 2003. Comparison of two numerical schemes for solving the 1D shallow water equations. University of Twente, The Netherlands.
 
7-       De Lemos, M. J. 2012. Turbulence in porous media: modeling and applications, Elsevier.
 
8-       Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguerre, C., Vo, T. T., James, F. and Cordier, S. 2011. SWASHES: a library of shallow water analytic solutions for hydraulic and environmental studies. preprint, HAL hal-00628246.
 
9-       Delis, A. I., Nikolos, I. and Kazolea, M. 2011. Performance and comparison of cell-centered and node-centered unstructured finite volume discretizations for shallow water free surface flows. Archives of Computational Methods in Engineering, 18, 57-118.
 
10-   Gottlieb, S., Shu, C.-W. and Tadmor, E. 2001. Strong stability-preserving high-order time discretization methods. SIAM Review, 43, 89-112.
 
11-   Huang, Y., Zhang, N. and Pei, Y. 2013. Well-balanced finite volume scheme for shallow water flooding and drying over arbitrary topography. Engineering Applications of Computational Fluid Mechanics, 7, 40-54.
 
12-   Ketcheson, D. I., Macdonald, C. B. and Gottlieb, S. 2009. Optimal implicit strong stability preserving Runge–Kutta methods. Applied Numerical Mathematics, 59, 373-392.
 
13-   Mahdavi, A. and Talebbeydokhti, N. 2009. Modeling of non-breaking and breaking solitary wave run-up using FORCE-MUSCL scheme. Journal of Hydraulic Research, 47, 476-485.
 
14-   Nguyen-Ba, T., Nguyen-Thu, H., Giordano, T. and Vaillancourt, R. 2011. Strong-stability-preserving 3-stage Hermite–Birkhoff time-discretization methods. Applied Numerical Mathematics, 61, 487-500.
 
15-   Saiduzzaman, M. and Ray, S.K. 2013. Comparison of Numerical Schemes for Shallow Water Equation. Global Journal of Science Frontier Research Mathematics and Decision Sciences 13.
 
16-   Thacker, W. 1981. Some exact solutions to the nonlinear shallow-water wave equations. Journal of Fluid Mechanics, 107, 499-508.
 
17-   Toro, E. 2001. Shock-capturing methods for free-surface shallow flows. 2001. Chichester, etc.: Wiley.
 
18-   Toro, E. F. 2009. Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer.
 
19-   Weill, S., Chiara-Roupert, R.d. and Ackerer, P. 2014. Accuracy and efficiency of time integration methods for 1D diffusive wave equation. Computational Geosciences 18,697-709
 
20-   Zhou, J. G., Causon, D. M., Mingham, C. G. and Ingram, D. M. 2001. The surface gradient method for the treatment of source terms in the shallow-water equations. Journal of Computational Physics 168,1-25.