به‌دست آوردن پروفیل جریان متغیر تدریجی در کانال‌های ذوزنقه‌ای و مثلثی به کمک روش نیمه‌تحلیلی تجزیه آدومین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده فنی و مهندسی دانشگاه شهرکرد، شهرکرد، ایران

2 دانشجوی کارشناسی ارشد آب و سازه هیدرولیکی دانشکده مهندسی دانشگاه شهرکرد، شهرکرد، ایران.

چکیده

محاسبه‌ی پروفیل جریان‌های متغیر تدریجی در کانال‌ها، امری بسیار مهم است زیرا طراحی ابعاد کانال نیازمند دانستن عمق آب در جریان متغیر تدریجی است. به‌منظور به­دست آوردن این پروفیل باید معادله دیفرانسیل جریان متغیر تدریجی حل شود؛ تا عمق جریان در طول کانال مشخص شود. در این مقاله با استفاده از روش تجزیه آدومین (Adomian Decomposition Method) یا ADMیک حل نیمه‌تحلیلی برای حل معادله جریان متغیر تدریجی در کانال‌های منشوری مثلثی و ذوزنقه‌ای ارایه ‌شده است. نتایج این حل‌های نیمه‌تحلیلی با نتایج روش عددی تفاضل محدود (Finite Difference Method)یا FDMبرای چند مثال در کانال‌های مثلثی و ذوزنقه‌ای مقایسه گردیده است. به­طوری­که ابتدا نتایج پروفیل برای سه تقریب چهار جمله، پنج جمله و شش جمله موجود در روش آدومین در هر کانال ارایه ‌شده است و سپس نتایج هر تقریب با نتایج پروفیل به‌دست‌آمده از روش عددی تفاضل محدود مقایسه شده است. پروفیل‌های روش آدومین تطابق خوبی را با پروفیل‌های روش تفاضل محدود نشان می‌دهد به­طوری­که درصد خطای حداکثر پروفیل جریان متغیر تدریجی روی شیب ملایم از روش آدومین تقریب شش جمله با روش تفاضل محدود در کانال مثلثی 51/0 درصد و در کانال ذوزنقه‌ای 02/0 درصد می‌باشد. هم­چنین دو مثال نیز از پروفیل جریان متغیر تدریجی در کانال‌های مثلثی و ذوزنقه‌ای برای شیب تند ارایه ‌شده است. درصد خطای حداکثر در این حالت نیز میان روش آدومین تقریب شش جمله و روش تفاضل محدود برای کانال مثلثی 11/0 درصد و در کانال ذوزنقه‌ای 22/0 درصد می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Obtaining gradually varied flow profile in trapezoidal and triangular channels using semi-analytical method of Adomian decomposition

نویسندگان [English]

  • Hamed Reza Zarif Sanayei 1
  • Reza Kamgar 1
  • Nastaran Sheni Shahvand 2
1 Assistant Professor, Faculty of Engineering, Shahrekord University, Shahrekord, Iran
2 Master of science student of Water and Hydraulic Structures, Shahrekord University, Shahrekord, Iran.
چکیده [English]

The non-uniform flow in a prismatic channel with gradual changes in the free water surface level is called the gradually varied flow (GVF). Calculation of the GVF profiles over the last century has become a significant topic for the researchers in the relevant fields.  To obtain this profile, the nonlinear ordinary differential equation of the GVF needs to be solved. This can be carried out either numerically or analytically. Although several studies have been conducted on the GVF in open channels in various forms (Jan & Chen, 2013; Vatankhah, 2010, 2015; Homayoon & Abedini, 2019), the number of semi-analytical studies in the field of gradual variable flow in trapezoidal and triangular channels is limited, which requires further investigation. In this research, the Adomian Decomposition Method (ADM) is used to find a semi-analytical solution for solving the GVF equation in the triangular and trapezoidal prismatic channels. In this method, the Manning equation is used as the resistance equation. Moreover, for the aim of verifying the semi-analytical solutions, the ADM results are compared with the finite difference method (FDM). The presented semi-analytical solutions in this paper can be used to validate other numerical methods in similar studies.

کلیدواژه‌ها [English]

  • Flow Depth
  • Channel
  • Finite Difference Method
  • Ordinary Differential Equation
  • ADM
1-Achour, B. and Debabeche, M., 2003. Control of hydraulic jump by sill in a triangular channel. Journal of Hydraulic Research, 41(3), pp. 97–103.
 
2-Adomian, G., 1986. Nonlinear stochastic  operator equations. Academic Press.
 
3-Chaudhry, M.H., 2008. Open channel flows. Second Edition, Springer Science, Spring Street, New York.
 
4-Chow, V.T., 1959. Open-channel hydraulics. New York: McGraw-Hill.
 
5-Das, A., 2007. Flooding probability constrained optimal design of trapezoidal channels. Journal of Irrigation and Drainage Engineering, 133(1), pp. 53–60.
 
6-Desatnik, M.S. and Qassim, R.Y., 2017. A new exact solution of one dimensional steady gradually varied flow in open channels. Journal of Engineering Mathematics. 1(1), pp. 7-10.
 
7-Hager, W.H., 2010. Wastewater hydraulics: theory and practice. New York, N.Y.Springer. 
 
8-Homayoon, L. and Abedini, M.J., 2019. Development of an analytical benchmark solution to assess various gradually varied flow computations. Journal of Hydraulic Engineering. https://doi.org/10.1080/09715010.2018.1563872
 
9-Jan, C.D. and Chen, CL., 2013. Gradually varied open-channel flow profiles normalized by critical depth and analytically  solved by using Gaussian hypergeometric functions. Hydrology and Earth System Sciences, 17(3), pp. 973–987.  
 
10-Jan, C.D., 2014. Gradually-varied flow profiles in open channels: Analytical solutions by using Guassian hypergeometric function. Springer, Berlin, Heidelberg.
 
11-Subramanya, K., 2009. Flow in open channels. 3rd ed. New York: Tata McGraw- Hill.
 
12-Szymkiewicz, R., 2010. Numerical modeling in open channel hydraulics. New York, Springer.
 
13-Vatankhah, A.R., 2010a. Analytical integration of the equation of gradually varied flow for triangular channels. Flow Measurement and Instrumentation, 21(4), pp. 546–549.
 
14-Vatankhah, A.R., 2010b. Exact sensitivity equation for one-dimensional steady-state shallow water flow (application to model calibration). Journal of Hydraulic Engineering, 15(11), pp. 939–945.
 
15-Vatankhah, A.R., 2011a. Direct integration of gradually varied flow equation in parabolic channels. Flow Measuremrnt Instrumentation, 22(3), pp. 235–241.
 
16-Vatankhah, A.R., 2011b. Direct integration of Manning based GVF equation in trapezoidal channels. Journal of Hydrologic Engineering, 17(3), pp. 455-462.
 
17-Vatankhah, A.R., 2015. Analytical solution of gradually varied flow equation in circular channels using variable Manning coefficient. Flow Measurement and Instrumentation, 43, pp. 53-58.
 
18-Zaghloul, N.A., and Anwar, M.N., 1991. Numerical integration of gradually varied flow in trapezoidal channel. Computer Methods in Applied Mechanics and Engineering, 88, pp. 259-272.