1- Agarwal, A., Maheswaran, R., Sehgal, V., Khos, R., Sivakumar, B. and Bernhofer, C., 2016. Hydrologic regionalization using wavelet-based multiscale entropy method. Journal of Hydrology, 538, pp.22–32.
2- Amirat, Y., Benbouzidb, M., Wang, T., Bacha, K. and Feld, G., 2018. EEMD-based notch filter for induction machine bearing faults detection. Applied Acoustics, 133, pp.202–209.
3- Govindaraju, R.S., 2000. Artificial neural networks in hydrology. I: Preliminary concepts. Hydrologic Engineering, ASCE, 5(2), pp.115-123.
4- Engle, R.F., 1982. Autoregressive conditional heteoscedasticity with estimates of the variance of United Kingdom inflations. Econometrica, 50, pp.987-1007.
5- Hayes, M.J., 2007. What is drought: drought indices. National drought mitigation center, University of Nebraska. (Online). http://drought. unl. edu/whatis/indices. htm., 2007.
6- Hayes, M.J., Svoboda, M.D., Wilhite, D.A. and Vanyarkho. O.V., 1999. Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society, 80(3), pp.429- 437.
7- Hung, W.U., Hayes, M.J., Wilhite, D.A. and Svoboda, M. D., 2005. The effect of the length of record on the standardized precipitation index calculation. International journal of climatology, 25, pp.505-520.
8- Khosravi, M., Nasiri, M., Safavi, A.A. and Pourjafarian, N., 2014. Drought furcating using artificial noral network, case study: Siraz station. Journal of Geographical Studies of Arid Regions, 2(8), pp.103-119. (In Persian).
9- Laux, P., Vogl, S., Qiu, W., Knoche, H.R. and Kunstmann, H., 2011. Copula-based statistical refinement of precipitation in RCM simulations over complex terrain hydrology. Earth System Science, 15, pp.2401-2419.
10- McKee, T.B., Doesken, J. and Kleist, J., 1993. The Relationship of drought frequency and duration to time scales. In Eighth Conference on Applied Climatology, Anaheim, California.
11- Modarres, R. and Ouarda, T.B., 2013. Modeling rainfall–runoff relationship using multivariate GARCH model. Journal of Hydrology, 499, pp.1-18.
12- Modarres, R. and Ouarda, T.B., 2014. Modeling the relationship between climate oscillations and drought by a multivariate GARCH model. Water Resources Research, 50(1), pp.601-618.
13- Modarres, R., Sarhadi, A. and Burn, D.H., 2016. Changes of extreme drought and flood events in Iran. Global and Planetary Change, 144, pp.67-81.
14- Morid, S., Smakhtin, V. and Bagherzadeh, K., 2008. Drought forecasting using artificial neural networks and time series of drought indices. International Journal of Climatology, 27, pp.2103-2111.
15- Morid, S., Smakhtin, V. and Moghaddasi, M., 2006. Comparison of seven meteorological indices for drought monitoring in Iran. International Journal of Climatology, 26(7), pp.971-985.
16- Neal, R.M., 1997. Monte carlo implementation of gaussian process models for bayesian regression and classification. Technical report, no. 9702.
17- Nosrati, K., Eslamian, S., Shahbazi, A., Malekian, A. and Saravi, M.M., 2009. Application of daily water resources assessment model for monitoring water resources indices. International Journal of Ecological Economics and Statistics, 13, pp.88-99.
18- Rezazadeh, A. and Sattari, M.T., 2016. Estimation of scour depth of piers in hydraulic structures using Gaussian process regression. Journal of Applied Research in Irrigation and Drainage Structures Engineering, 16(65), pp.19-36 . (In Persian).
19- Saada, N. and Abu-Romman, A., 2017. Multi-site modeling and simulation of the standardized precipitation index (SPI) in Jordan. Journal of Hydrology: Regional Studies, 14, pp.83–91.
20- Samuelsson, O., Björk, A., Zambrano, J. and Carlsson, B., 2017. Gaussian process regression for monitoring and fault detection of wastewater treatment processes. Water Science and Technology, 75(12), pp.2952-2963.
21- Shokrikochak, S. and Behnia, A., 2013. Monitoring and prediction of Khuzestan province, Iran drought using SPI drought index and Markov chain. Irrigation Sciences and Engineering, 36(3), pp.1-12. (In Persian).
22- Siviapragasam, C. and Liong, S., 2001. Rainfall and runoff forcasting with SSA-SVM approach. Hydroinformation, 3(5), pp.141-152.
23- Wang, W., Van Gelder, P.H. and Vrijling, J.K., 2005. Testing and modeling autoregressive conditional heteroskedasticity of streamflow processes. Nonlinear Processes in Geophysics, 12, pp.55-66.
24- Wu, Z. and Huang, N.E., 2004. A study of the characteristics of white noise using the empirical mode 4decomposition method. Proceedings of the Royal Society of London 460A, pp.1597–1611.
25- Younesi, M., Shahraki, N., Marofi, S. and Nozari, H., 2018. Drought forecasting using artificial wavelet neural network integrated model (WA-ANN) and time series model (ARIMA). Irrigation Sciences and Engineering, 41(2), pp.167-181. (In Persian).
26- Zhu, S., Luo, X., Xu, Z. and Ye, L., 2019. Seasonal streamflow forecasts using mixture-kernel GPR and advanced methods of input variable selection. Hydrology Research, 50(1), pp.200-14.