مدل سازی جریان آب زیرزمینی آبخوان آستانه-کوچصفهان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد مهندسی عمران-مهندسی آب، دانشکده مهندسی عمران و نقشه برداری، دانشگاه تحصیلات تکمیلی صنعتی وفناوری پیشرفته، کرمان.

2 دانشیار بخش مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان،

چکیده

کارایی تصمیمات مدیریتی در مسائل آب زیرزمینی را می‌توان با افزایش دقت مدل‌سازی افزایش داد. یکی از راه‌های رسیدن به این مهم، استفاده از روش‌‌های مستقل از شبکه می‌باشد. در این تحقیق، دو روش بدون شبکه المان تحلیلی و هم‌آیی نقطه‌ای جهت مدل‌سازی جریان آب زیرزمینی مورد استفاده قرار گرفتند. روش المان تحلیلی که برداشتی آزاد از مفهوم برهم نهی توابع خطی می‌باشد به کمک توابع تحلیلی دقیق و مستقل از وسعت دامنه منطقه به مدل‌سازی جریان می‌پردازد. در روش هم‌آیی نقطه‌ای به جای استفاده از شبکه‌بندی بر روی دامنه مدل، از یک سری نقاط پخش‌شده استفاده می‌شود؛ این روش عددی، در حل بسیاری از معادلات دیفرانسیل جزیی با شرایط مرزی استفاده می‌شود. جهت بررسی نحوه مدل‌سازی و مقایسه دقت هر روش، از داده‌های میدانی دشت آستانه-کوچصفهان استفاده شد. واسنجی مدل‌های توسعه‌یافته نیز توسط الگوریتم اجتماع ذرات انجام شد. توسعه مدل‌های ارایه شده توسط زبان برنامه‌نویسی شی‌گرا پایتون انجام گردید. نتایج مدل المان تحلیلی خطای میانگین 382/0 متر و ریشه میانگین مربعات خطا 805/2 متر را نشان می‌دهد. در روش هم‌آیی نقطه‌ای نیز بعد از تحلیل حساسیت، خطای میانگین 145/0 متر و ریشه میانگین مربعات خطا 897/0 متر به‌دست آمد. مقایسه نتایج دو روش مذکور نشان می دهد که روش هم‌آیی نقطه‌ای نتایج بهتری را نسبت به مدل المان تحلیلی پیش‌بینی کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Groundwater Modeling of Astaneh-Kuchesfehan Aquifer

نویسندگان [English]

  • Arman Mohammadi 1
  • Mahnaz Ghaeini-Hessaroeyeh 2
1 M.Sc. Graduate of Water Engineering-Civil Engineering, Department of Civil Engineering and Geodesy, Graduate University of Advanced Technology, Kerman, Iran.
2 Associate Professor, Department of Civil Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Introduction
More efficient decisions in groundwater problems can be improved by increasing modeling accuracy. The mesh-free numerical model is a way to achieve this goal. In recent years, various mesh-free methods for modeling groundwater have been developed. This paper aims to develop groundwater models by mesh-free methods, including Analytical Element Method (AEM) and Point Collocation Method (PCM). The AEM is an idealistic perception of the linear superposition concept (Strack, 1987). The PCM uses a set of points scattered within the domain of the problem that transforms the governing partial differential equations into algebraic equation systems and does not need any predefined mesh (Liu & Gu, 2005).
 
Methods
Astaneh-Kuchesfahan plain is one of the agricultural centers in the province of Gilan located between Tehran and the southern basin of the Caspian Sea in the north part of Iran. The geographical location of the Astaneh-Kouchesfahan aquifer is shown in Fig. (1).
In this research, analytic element and point collocation mesh-free methods are used for groundwater modeling. The analytical element method is essentially a version of the superposition techniques. This method uses the exact analytical functions, and it doesn't need mesh-dependent interpolation functions (Fitts, 2012 ). Some points are distributed on the computational domain in the point collocation method, and the shape functions are created to solve the governing equation. This method is used to solve many partial differential equations with boundary conditions (Liu & Gu, 2005). The flow models are applied for groundwater modeling of the Astaneh-Kouchesfahan aquifer, and their results are compared. Particles Swarm Optimization (PSO) algorithm is used for the calibration of flow models. The models are developed by Python Object-Oriented Programming (OOP) language. The results of the AEM flow model based on the equipotential contour lines are shown in Fig. (2). Figure (3) also shows the nodal arrangement in the problem domain for the PCM model and geometry of the support domain.

کلیدواژه‌ها [English]

  • Analytical element method
  • Point collocation method
  • Astaneh-Kuchesfahan
  • Groundwater modeling
  • Bakker, M., Anderson, E., Olsthoorn, T., and Strack, O.D.L., 1999. Regional groundwater modeling of the Yucca Mountain site using analytic elements. Journal of Hydrology, 226(3),167-178.

 

  • Bakker, M. and Kelson, V.A., 2009. Writing analytic element programs in Python. Ground Water. 47(6), 828-834.

 

  • Craig, J.R., 2004. Reactive contaminant transport modeling using analytic element flow solutions. PhD Thesis. The State University of New York, Buffalo, USA.

 

  • Fitts, C.R., 2012. Groundwater Science. 2ed Academic Press, Oxford.

 

  • Janković I. and Barnes, R., 1999. High-order line elements in modeling two-dimensional groundwater flow. Journal of Hydrology, 226(3), 211-223.

 

  • Kansa E.J.,1990. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers and Mathematics with Applications, 19(8), 147-161.

 

  • Khorramdel, G.N., Mohammadi, K. and Monem, M.J., 2008. Optimization of observation well network for estimation of groundwater balance using double water table fluctuation method. Journal of Water and Soil, 22(2), 358-370 (In Persian).

 

  • Liu, G.R. and Gu, Y.T., 2005. An introduction to meshfree methods and their programming. Springer, Dordrecht.

 

  • Mirmoshtaghi, M., Amirnejad, R. and Khaledian, M.R., 2012. Evaluating of water quality of Sefid-Rood and zoning by water quality index NSFWQI and OWQI. Journal of Wetland Ecobiology, 3(9), pp.23-34 (In Persian).

 

  • Meenal, M. and Eldho, T.I.; 2011. Simulation of groundwater flow in unconfined aquifer using meshfree point collocation method. Engineering Analysis with Boundary Elements, 35(4), 700-707.

 

  • Meenal M. and T.L. Eldho, T.L., 2012. Two-dimensional contaminant transport modeling using meshfree point collocation method (PCM). Engineering Analysis with Boundary Elements, 36(4), 551-561.

 

  • Pathania T. and Rastogi, A.K., 2017. Groundwater flow simulation in confined aquifer by meshless element free Galerkin method. European Water, 57, 505-512.

 

  • Pokrajac, D. and Lazic, R., 2002. An efficient algorithm for high accuracy particle tracking in finite elements. Advances in Water Resources. 25(4), 353-369.

 

  • Rabideau, A.J.; Craig, J.R., Silavisesrith, W., Fredrick, K., Flewelling, D.M., Janković, I., Becker, M.W., Bandilla, K. and Matott, L.S., 2007. Analytic-element modeling of supraregional groundwater flow: Concepts and tools for automated model configuration. Journal of Hydrologic Engineering (ASCE), 12(1), 83-96.

 

  • Ranjram, M. and Craig, J.R., 2018. Closed analytic elements with flexible geometry. Groundwater, 56(5), 816-22.

 

  • Saatsaz, M., 2012. Groundwater resource assessment of Astaneh-Kouchesfahan plain, PhD Thesis, University Putra Malaysia, Serdang, Malaysia.

 

  • Saatsaz, M., Sulaiman, W.N.A., Eslamian, S. and Javadi, S., 2013. Development of a coupled flow and solute transport modelling for Astaneh–Kouchesfahan groundwater resources, North of Iran. International Journal of Water, 7(1), 80-103.

 

  • Strack, O.D.L.; Fitts, C. and Zaadnoordijk, W., 1987. Application and demonstration of analytic element models. NWWA Conference on Solving Ground Water Problems with Models, Ohio, USA, 1464-1474.

 

  • Strack, O.D.L., 2009. The generating analytic element approach with application to the modified Helmholtz equation. Journal of Engineering Mathematics, 64(2), 163-191.

 

  • Wang, H.F. and Anderson, M.P., 1995. Introduction to groundwater modeling: finite difference and finite element methods. Academic Press, San Francisco.