1- Ahmadi, A., Radmanesh, F., Parham, G.A. and Mirabbasi, R., 2017. Comparison of conventional and intelligent methods in estimating copula function parameters for multivariate frequency analysis of low flows (Case study: Dez river basin), ECO Hydrology, 4(2), pp. 315-325 (In Persian).
2- Brunner, M.I., Seibert, J. and Favre, A.C., 2016. Bivariate return periods and their importance for flood peak and volume estimation, Wiley Interdisciplinary Reviews: Water, 3(6), pp. 819-33.
3- Cannon, A.J., 2010. A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology. Hydrological Processes, 24, pp. 673–685.
4- Chen, L., Guo, S., Yan, B., Liu, P. and Fang, B., 2010. A new seasonal design flood method based on bivariate joint distribution of flood magnitude and date of occurrence, Hydrological Sciences Journal, 55(8), pp. 1264–1280.
5- Chen, L., Singh, V.P., Guo, S. and Zhou, j., 2015. Copula-based method for multisite monthly and daily streamflow simulation, Journal of Hydrology, 528, pp. 369–384
6- De Michele, C. and Salvadori, G., 2003. A generalized Pareto intensity duration model of storm rainfall exploiting 2-copulas, Journal of Geophysical Research, 108(2), pp. 1–11
7- De Michele, C., Salvadori, G., Passni, G. and Vezzoli, R., 2007. A multivariate model of sea storms using copulas, Coastal Engineering, 54(10), pp. 734–751
8- Du, T., Xiong, L., Xu, C.Y., Gippel, C.J., Guo, S. and Liu, P., 2015. Return period and risk analysis of nonstationary low-flow series under climate change, Journal of Hydrology, 527, pp. 234–250
9- El Adlouni, S., Ouarda, T., Zhang, X., Roy, R. and Bobée, B., 2007. Generalized maximum likelihood estimators for the nonstationary generalized extreme value model, Water Resources Research, 43(3), pp. 1-13.
10- Favre, A.C., Adlouni, S., Perreault, L., Thiémonge, N. and Bobée, B., 2004. Multivariate hydrological frequency analysis using copulas, Water Resources Research, 40(1), pp. 1-11.
11- Giraldo Osorio, J.D. and García Galiano, S.G., 2012. Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from regional climate models (RCMs), Journal of Hydrology, 45, pp. 82–92.
12- Grimaldi, S. and Serinaldi, F., 2006a. Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 29(8), pp. 1155–1167
13- Grimaldi, S. and Serinaldi, F., 2006b. Design hyetographs analysis with 3-copula function, Hydrological Sciences Journal, 51(2), pp. 223–238
14- Hui-Mean, F., Yusof, F., Yusop Z. and Suhaila, J., 2019. Trivariate copula in drought analysis: a case study in peninsular Malaysia, Theoretical and Applied Climatology, 138(1), pp. 657-671.
15- Jiang, C., Xiong, L., Xu, C.Y. and Guo, S., 2015. Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula, Hydrological Processes, 29(6), pp. 1521–1534.
16- Joe, H., 1997. Multivariate models and multivariate dependence concepts. CRC Press.
17- Kao, S.C. and Govindaraju, R. S. 2010. A copula-based joint deficit index for droughts. Journal of Hydrology (Amsterdam), 380(1–2), pp. 121–134
18- Kao, S.C. and Govindaraju, R.S., 2007. A bivariate frequency analysis of extreme rainfall with implications for design. Journal of Geophysical Research, 112(13), 131-159
19- Keef, C., Svensson, C. and Tawn, J.A., 2009. Spatial dependence in extreme river flows and precipitation for Great Britain. Journal of Hydrology (Amsterdam), 378(3–4), pp. 240–252
20- Khalili, K., Tahoudi, M. N., Mirabbasi, R. and Ahmadi, F., 2016. Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic Environmental Research and Risk Assessment, 30(4), pp. 1205-21.
21- Kuhn, G., Khan, S., Ganguly, A.R., and Branstetter, M.L., 2007. Geospatial temporal dependence among weekly precipitation extremes with applications to observations and climate model simulations in South America, Advances in Water Resources, 30(12), pp. 2401–2423
22- Mirabbasi, R., Anagnostou, E.N., Fakheri-Fard, A., Dinpashoh, Y. and Eslamian, S., 2013. Analysis of meteorological drought in northwest Iran using the Joint Deficit Index, Journal of Hydrology, 492, pp. 35-48.
23- Mirjalili, S. and Lewis, A., 2016. The whale optimization algorithm, Advances in Engineering Software, 95, pp. 51-67.
24- Nazeri Tahroudi, M., Pourreza-Bilondi, M. and Ramezani, Y., 2019. Toward coupling hydrological and meteorological drought characteristics in Lake Urmia Basin, Iran, Theoretical and Applied Climatology.
25- Nelsen, R.B., 2007. An introduction to copulas. Springer Science & Business Media.
26- Renard, B. and Lang, M., 2007. Use of a Gaussian copula for multivariate extreme value analysis: some case studies in hydrology, Advances in Water Resources, 30(4), pp. 897–912
27- Salvadori, G. and De Michele, C., 2007. On the use of copulas in hydrology: theory and practice. Journal of Hydrologic Engineering, 12(4), pp. 369-80.
28- Salvadori, G. and De Michele, C., 2010. Multivariate multiparameter extreme value models and return periods: a copula approach, Water Resources Research, 46(10), pp. 1-11.
29- Salvadori, G., De Michele, C., Kottegoda, N.T., Rosso, R., 2007. Extremes in nature: an approach using copulas. Springer, New York
30- Saremi, S., Mirjalili, S. and Lewis, A., 2017. Grasshopper optimisation algorithm: Theory and application, Advances in Engineering Software, 105, pp. 30-47.
31- Serinaldi, F., Bonaccorso, B., Cancelliere, A. and Grimaldi, S., 2009. Probabilistic characterization of drought properties through copulas, Physics and Chemistry of the Earth, 34(10–12), pp. 596–605.
32- Shiau, J.T., 2006. Fitting drought duration and severity with two-dimensional copulas, Water Resour Manage, 20(5), pp. 795–815.
33- Shiau, J.T., Wang, H. Y. and Tsai, C.T., 2006. Bivariate frequency analysis of floods using copulas, Journal of the American Water Resources Association, 42(6), pp. 1549–1564.
34- Singh, V.P., 2010. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data, Stochastic Environmental Research and Risk Assessment, 24(3), pp. 425–444.
35- Sklar, M., 1959. Fonctions de répartition à n dimensions et leurs marges. Université Paris.
36- Tahroudi, M.N., Khalili, K., Ahmadi, F., Mirabbasi, R. and Jhajharia, D., 2019. Development and application of a new index for analyzing temperature concentration for Iran’s climate, International Journal of Environmental Science and Technology, 16(6), pp. 2693-2706.
37- Vaziri, H., Karami, H., Mousavi, S.F. and Hadiani, M., 2018. Analysis of hydrological drought characteristics using copula function approach, Paddy and water environment, 16(1), pp. 153-161.
38- Villarini, G., Serinaldi, F., Smith, J.A. and Krajewski, W.F., 2009. On the stationarity of annual flood peaks in the continental United States during the 20th century, Water Resources Research, 45, pp. 1-17.
39- Xiao, Y., Guo, S.L., Liu, P., Yan, B.W. and Chen, L., 2009. Design flood hydrograph based on multi-characteristic synthesis index method, Journal of Hydrologic Engineering, 14(12), pp. 1359–1364.
40- Yue, S. and Rasmussen, P., 2002. Bivariate frequency analysis: discussion of some useful concepts in hydrological application, Hydrological Processes, 16(14), pp. 2881-98.
41- Zeynali, M.J. and Pourreza Bilondi, M., 2018. Matlab and its application in water resources, Publication of University of Birjand, 345 Pp (In Persian).
42- Zhang, L. and Singh, V.P., 2006. Bivariate flood frequency analysis using the copula method, Journal of Hydrologic Engineering, 11(2):150–164.
43- Zhang, L. and Singh, V.P., 2007a. Gumbel Hougaard copula for trivariate rainfall frequency analysis. Journal of Hydrologic Engineering, 12(4), pp. 409–419.
44- Zhang, L. and Singh, V.P., 2007b. Trivariate flood frequency analysis using the Gumbel-Hougaard copula, Journal of Hydrologic Engineering, 12(4), pp. 431–439.