بررسی آزمایشگاهی مشخصات پرش هیدرولیکی در حوضچه‌های واگرا-همگرا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آب و سازه‌های هیدرولیکی دانشگاه آزاد اسلامی واحد استهبان.

2 استادیار گروه آب واحد استهبان، دانشگاه آزاد اسلامی واحد استهبان

3 دانشیار، دانشگاه صنعتی اصفهان.

چکیده

در این تحقیق مشخصات پرش هیدرولیکی در حوضچه‌های واگرا-همگرا مورد بررسی قرار گرفته و کلیه آزمایش­ها در کانالی به طول 11 متر، عمق 7/0 متر  و عرض 48/0 متر انجام گرفت. نتایج به‌دست آمده از حوضچه واگرا-همگرا با حوضچه واگرای تدریجی و کلاسیک و همچنین تحقیقات پیشین مقایسه شده است. نتایج نشان می‌دهد که در دبی بیشترین  نسبت عمق (y2/y1) و طول پرش (Lj/y1) در حوضچه واگرا-همگرا به‌ترتیب به میزان 5/35 و 7/95 درصد نسبت به حوضچه‌های کلاسیک کاهش داشته در حالی‌که این مقادیر برای حوضچه واگرای تدریجی به‌ترتیب  برابر با 7/31 و 9/69 درصد به‌دست آمده است. از طرفی مقدار افت انرژی در حوضچه‌های واگرا-همگرا و واگرای تدریجی به‌ترتیب 7/23 و 8/19 درصد نسبت به حوضچه‌های کلاسیک افزایش یافته است. در انتها با استفاده از آنالیز ابعادی و دو روش تحلیلی و رگرسیونی، معادله‌هایی برای پیش‌بینی نسبت اعماق مزدوج و طول پرش پیشنهاد شده است. با توجه به این تحقیق می‌توان نتیجه گرفت که حوضچه‌های واگرا-همگرا عملکرد مناسب­تری نسبت به حوضچه‌های کلاسیک و واگرا دارد که علاوه بر ابعاد کمتر دارای افت انرژی بیشتری نیز می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental investigation of hydraulic jump in Hexagonal Ez Stilling Basin

نویسندگان [English]

  • Mohammad hossein Jafari Abnavi 1
  • Reza Mohammadpour 2
  • Mohammad karim Beirami 3
1 PhD Student of Water and Hydraulic Structure, Islamic Azad University, Estahban branch.
2 Assistant Professor, Department of Civil Engineering, Islamic Azad University, Estahban branch.
3 Associate Professor, Isfahan University of Technology
چکیده [English]

Hydraulic jump is used as an important energy dissipator phenomenon downstream of hydraulic structures such as spillways, gates, and chutes. The US Bureau of Reclamation (USBR) surveyed the state of knowledge in this field and presented practical guidelines for the design of different types of stilling basins (Peterka 1958). However, it is always preferable to achieve maximum energy loss with a minimum length and cost in the stilling basin. Experimental studies on the effect of gradually diverging stilling basin walls on the hydraulic jump parameters have shown that diverging walls cause a reduction of the sequent depth by up to 30%, a reduction of the length of the hydraulic jump by up to 22%, and an increase in the energy loss compared with the classic hydraulic jump (Kouluseus and Ahmad 1969; Khalifa and McCorquodale 1979; Omid et al. 2007). Hassanpour et al. (2017) studied the characteristics of the hydraulic jump in a gradually expanding rectangular stilling basin. They showed that the sequent depth ratio and relative length of the jump decrease with decreasing divergence ratio. Arabhaabhirama and Abela (1971) studied radial hydraulic jumps in a gradually expanding rectangular channel with divergence angles from 0 to 13◦. The results showed that the divergence of the walls causes reductions in the sequent depth and length of the jump and an increase in energy loss as compared to the hydraulic jump in a straight rectangular channel.
Since the hydraulic jump changes the flow from the supercritical to the subcritical, on the other hand, the flow depth is decreased in the expanding and diverging stilling basins in the supercritical and subcritical conditions, respectively. The innovation of this research is the use of divergent-convergent stilling basins to increase the performance of the stilling basins.  The results of the divergent-convergent stilling basin were compared with the classic and divergent basins as well as previous research.

کلیدواژه‌ها [English]

  • Flow Velocity
  • Jump length
  • Alternative depth
  • Energy loss
1- Arbhabhirama, A. and Abella, A.U., 1971. Hydraulic jump within gradually expanding channel. Journal of the Hydraulics Division97(1), pp.31-42. Doi: 10.1061/JYCEAJ.000286.
 
2- Alhamid, A.A., 2004. S-jump characteristics on sloping basins. Journal of Hydraulic Research42(6), pp.657-662. Doi: 10.1080/00221686.2004.9628319.
 
3-Bakhmeteff. B. A. 1932. Hydraulics of Open Channels. 1st ed.; McGraw-Hill: New York, NY, USA.
 
4- Bremen, R. and Hager, W.H., 1993. T-jump in abruptly expanding channel. Journal of Hydraulic Research31(1), pp.61-78. Doi: 10.1080/00221689309498860.
 
5-Bélanger. J.B. 1828. Essai sur la Solution Numérique de Quelques Problèmes Relatifs au Mouvement Permanent des Eaux Courantes (‘Essay on the Numerical Solution of Some Problems relative to Steady Flow of Water’); Carilian-Goeury: Paris, France.
 
6- Beirami, M.K. and Chamani, M.R., 2006. Hydraulic jumps in sloping channels: sequent depth ratio. Journal of Hydraulic Engineering132(10), pp.1061-1068.
 
7- Beirami, M.K. and Chamani, M.R., 2010. Hydraulic jump in sloping channels: roller length and energy loss. Canadian Journal of Civil Engineering37(4), pp.535-543.doi:10.1139/l09-175.
 
8- Chanson, H. and Montes, J.S., 1995. Characteristics of undular hydraulic jumps: Experimental apparatus and flow patterns. Journal of Hydraulic Engineering121(2), pp.129-144. Doi: 10.1061/(ASCE)0733-9429(1995)121:2(129.
 
9- LUO, C.R., 2008. Analysis and Application of Hydraulic Jump with Downstream Abruptly Expanded Channel Flow. International Journal of Engineering and Innovative Technology, (8), pp.2277-3754.
10- Daneshfaraz. R. Aminvash. E. Esmaeli. R. Sadeghfam. R. and Abraham J. 2020. Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions. Journal of Groundwater Science and Engineering. DOI: 10.19637/j.cnki.2305-7068.2020.04.009.
 
11-Daneshfaraz. R. Aminvash. E. and Najibi. A. 2022. Experimental Study of Hysteretic Behavior of Supercritical Regime on Hydraulic parameters of Flow against Gabion Contraction.      doi:10.22059/ijswr.2022.334538.669141.
 
12-Daneshfaraz. R. Majedi Asl. M. Mirzaee. R. and Ghaderi. A. 2019. The S-jump’s Characteristics in the Rough Sudden Expanding Stilling Basin. AUT . Journal of Civil Engineering., 4(3) (2020) 349-356 DOI:10.22060/ajce.2019.16427.5586.
 
13- Daneshfaraz, R., Sadeghi, H., Joudi, A.R. and Abraham, J., 2017. Experimental investigation of hydraulic jump characteristics in contractions and expansions. Sigma Journal of Engineering and Natural Sciences35(1), pp.87-98.
 
14- Eshkou, Z., Dehghani, A.A. and Ahmadi, A., 2018. Forced hydraulic jump in a diverging stilling basin using angled baffle blocks. Journal of Irrigation and Drainage Engineering144(8), p.06018004. doi: 10.1061/(ASCE)IR.1943-4774.0001328.
 
15- Gul, E., Dursun, O.F. and Mohammadian, A., 2021. Experimental study and modeling of hydraulic jump for a suddenly expanding stilling basin using different hybrid algorithms. Water Supply21(7), pp.3752-3771. Doi: 10.2166/ws.2021.139.
 
16- Hassanpour, N., Hosseinzadeh Dalir, A., Farsadizadeh, D. and Gualtieri, C., 2017. An experimental study of hydraulic jump in a gradually expanding rectangular stilling basin with roughened bed. Water9(12), p.945. doi: 10.3390/w9120945.
 
17- Habib, AA, Ali, A.A.M., YM, A.A. and Yk, S., 2012. Estimation of hydraulic jump characteristics in stilling basin with guide walls. JES. Journal of Engineering Sciences40(6), pp.1599-1609. DOI: 10.21608/JESAUN.2012.114531
 
18- Hager, W.H., 1985. Hydraulic jump in non-prismatic rectangular channels. Journal of Hydraulic Research23(1), pp.21-35. Doi: 10.1080/00221688509499374.
 
19- Herbrand, K., 1973. The spatial hydraulic jump. Journal of Hydraulic Research11(3), pp.205-218. Doi: 10.1080/00221687309499774
 
20- Honar, T., Pourhamzeh, S. 2010. 'An Experimental Study of Convergent Hydraulic Jump in Stilling Basins', Water and Soil, 24(5), pp.966- 972. doi: 10.22067/jsw.v0i0.5297 (in Persian).
 
21- Ippen, A.T., 1951. High-velocity flow in open channels: a symposium: mechanics of supercritical flow. Transactions of the American Society of Civil Engineers116(1), pp.268-295. Doi: 10.1061/TACEAT.0006520.
 
22- Kashefipour, S.M. and Bakhtiari, M., 2009. Hydraulic jump in a gradually expanding channel with different divergence angles. In 33rd IAHR Congress. Advances in the Fundamentals of Water Science and Engineering, Vancouver.
 
23- Matin, M.A., Hasan, M. and Islam, M.A., 2008. Experiment on hydraulic jump in sudden expansion in a sloping rectangular channel. Journal of Civil Engineering (IEB)36(2), pp.65-77.
 
24- Nikpour, M.R., 2018. Investigation of Hydraulic Jump Turbulence Parameters in Divergent Rectangular Sections using Fluent Model. Irrigation Sciences and Engineering41(2), pp.61-75. Doi: 10.22055/JISE.2018.13457
 
25- Ohtsu, I., Yasuda, Y., Gotoh, H., Hager, W.H., Reinauer, R., Chanson, H. and Montes, J.S., 1997. Discussions and Closure: Characteristics of Undular Hydraulic Jumps: Experimental Apparatus and Flow Patterns. Journal of Hydraulic Engineering123(2), pp.161-164. Doi: 10.1061/(ASCE)0733-9429(1997)123:2(161.
 
26-Roushangar. K. and Ghasempour. R. 2017. Explicit prediction of expanding channels hydraulic jump characteristics using gene expression programming approach. 49 3 pp. 815–830.doi: 10.2166/nh.2017.262.
 
27- Torkamanzad, N., Hosseinzadeh Dalir, A., Salmasi, F. and Abbaspour, A., 2019. Hydraulic jump below abrupt asymmetric expanding stilling basin on rough bed. Water11(9), p.1756. doi:10.3390/w11091756.
 
28- Varaki, M.E., Kasi, A., Farhoudi, J. and Sen, D., 2014. Hydraulic jump in a diverging channel with an adverse slope. Iranian Journal of Science and Technology. Transactions of Civil Engineering38(C1), pp.111- 121
 
29- Zare, H.K. and Doering, J.C., 2011. Forced hydraulic jumps below abrupt expansions. Journal of Hydraulic Engineering137(8), pp.825-835. Doi: 10.1061/(ASCE)HY.1943-7900.0000369.